
Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

Algorithms for computing
optimal designs of experiments

under constraints

Dissertation thesis

Mgr. Eva Benková

Bratislava, 2022

Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

Algorithms for computing
optimal designs of experiments

under constraints

Dissertation thesis

Mgr. Eva Benková

Applied Mathematics

1114 Applied Mathematics

Department of Applied Mathematics and Statistics

Division of Statistics and Insurance Mathematics

Supervisor: doc. Mgr. Radoslav Harman, PhD.

Consultant: Univ.-Prof. Mag. Werner Müller, Dr.

Bratislava, 2022

Fakulta matematiky, fyziky a informatiky

Univerzita Komenského v Bratislave

Algoritmy výpočtu optimálnych
návrhov experimentov s

ohraničeniami

Dizertačná práca

Mgr. Eva Benková

Aplikovaná matematika

1114 Aplikovaná matematika

Katedra aplikovanej matematiky a štatistiky

Oddelenie štatistiky a poistnej matematiky

Vedúci práce: doc. Mgr. Radoslav Harman, PhD.

Konzultant: Univ.-Prof. Mag. Werner Müller, Dr.

Bratislava, 2022

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Mgr. Eva Benková
Study programme: Applied Mathematics (Single degree study, Ph.D. III. deg.,

full time form)
Field of Study: Mathematics
Type of Thesis: Dissertation thesis
Language of Thesis: English
Secondary language: Slovak

Title: Algorithms for computing optimal designs of experiments under constraints

Annotation: The so-called optimal experimental design is a methodology of planning an
experiment in a way that provides efficient estimation of the parameters of
an underlying statistical model. In the dissertation thesis, we will study the
mathematical and algorithmic aspects of the optimal experimental design for the
situations with specific restrictions. Such restrictions follow from requirements
that are either practical (e.g., to fit into a limited experimental budget) or
theoretical (e.g., to guarantee that the distance between the "design points"
is larger than a given threshold, which leads to the low correlations of
observations).

Aim: The aim of the thesis is to analyse the mathematical properties and develop
algorithmic solutions of selected problems of optimal experimental design
under various constraints. More specifically, the focus will be on the resource
constraints available for the experiment, as well as on the constraints determined
by specific geometric requirements on the set of design points.

Tutor: doc. Mgr. Radoslav Harman, PhD.
Consultant: Univ.-Prof. Mag. Werner Müller, Dr.
Department: FMFI.KAMŠ - Department of Applied Mathematics and Statistics
Head of
department:

prof. RNDr. Marek Fila, DrSc.

Assigned: 11.02.2013

Approved: 28.02.2013 prof. RNDr. Marek Fila, DrSc.
Guarantor of Study Programme

Student Tutor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Mgr. Eva Benková
Študijný program: aplikovaná matematika (Jednoodborové štúdium,

doktorandské III. st., denná forma)
Študijný odbor: matematika
Typ záverečnej práce: dizertačná
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Algorithms for computing optimal designs of experiments under constraints
Algoritmy výpočtu optimálnych návrhov experimentov s ohraničeniami

Anotácia: Takzvané optimálne navrhovanie experimentov je metodológia plánovania
experimentu, s cieľom poskytnúť efektívny odhad parametrov použitého
štatistického modelu. V dizertačnej práci budeme študovať matematické
a algoritmické aspekty optimálneho navrhovania experimentov pre situácie
so špecifickými ohraničeniami. Tieto ohraničenia plynú z požiadaviek, ktoré
sú praktického charakteru (napríklad potreba zohľadniť obmedzené finančné
zdroje, ktoré máme k dispozícii na vykonanie experimentu), alebo aj
teoretického charakteru (napríklad zaručiť, že vzdialenosť medzi "bodmi
experimentu" bude väčšia ako zadaný prah, čo vedie k nízkym koreláciám
pozorovaní).

Cieľ: Cieľom dizertačnej práce je analyzovať matematické vlastnosti a vypracovať
algoritmické riešenia vybraných problémov optimálneho navrhovania
experimentov s rôznymi typmi ohraničení. Konkrétne ide o ohraničenia
na zdroje, ktoré sú dostupné pre realizáciu experimentu, ako aj o špecifické
ohraničenia určené geometrickými požiadavkami na množinu bodov návrhu
experimentu.

Školiteľ: doc. Mgr. Radoslav Harman, PhD.
Konzultant: Univ.-Prof. Mag. Werner Müller, Dr.
Katedra: FMFI.KAMŠ - Katedra aplikovanej matematiky a štatistiky
Vedúci katedry: prof. RNDr. Marek Fila, DrSc.

Dátum zadania: 11.02.2013

Dátum schválenia: 28.02.2013 prof. RNDr. Marek Fila, DrSc.
garant študijného programu

študent školiteľ

In the first place, I would like to express my gratitude to my supervisor doc. Mgr.

Radoslav Harman, PhD. for his guidance and scientific help, as well as for his patience

with my nine-year-long studies interrupted by the births of my children. I would also

like to thank Univ.-Prof. Mag. Werner Müller, Dr., who kindly agreed to co-supervise

my thesis and offered me his help during my stay at Johannes Kepler University Linz. I

would also like to thank my family and friends, who supported me throughout my studies,

especially my husband Matúš, who may be the only person who has never doubted the

successful completion of my doctoral studies.

Mgr. Eva Benková

vi

Abstrakt

BENKOVÁ, Eva. Algoritmy výpočtu optimálnych návrhov experimentov s ohraničeniami

[dizertačná práca]. Univerzita Komenského v Bratislave. Fakulta matematiky, fyziky

a informatiky; Katedra aplikovanej matematiky a štatistiky. Vedúci práce: doc. Mgr.

Radoslav Harman, PhD. Bratislava 2022, 111 strán.

V tejto dizertačnej práci skúmame viacero problémov hľadania optimálnych návrhov

experimentov za prítomnosti rôznych ohraničení. Ako prvý uvádzame multiplikatívny

algoritmus pre konštrukciu D-optimálnych aproximatívnych návrhov ohraničených poč-

tom pokusov a súčasne celkovou cenou experimentu. Navrhnutá metóda je netriviálnou

špecifikáciou „barycentrickéhoÿ algoritmu predstaveného v [31], ktorý zahŕňa aj zmenšo-

vanie množiny všetkých pokusov odstraňovaním nepotrebných bodov návrhu. Analytic-

ky dokážeme konvergenciu tejto metódy a porovnáme jej výkon s inými konkurenčnými

metódami.

Iným typom lineárne ohraničených návrhov sú priestor-vypĺňajúce návrhy často použí-

vané v počítačových experimentoch. V práci navrhujeme všeobecnú schému heuristiky vý-

menného typu pre výpočet exaktných návrhov, ktorá je založená na pojme „exkluzívnych

množínÿ a dá sa adaptovať pre rôzne priestor-vypĺňajúce ohraničenia. Naša špecifikácia

tejto schémy pre takzvané Bridge návrhy výrazne prekonáva zavedenú metódu. Ďalej sme

túto všeobecnú schému implementovali pre takzvané Minimum-distance návrhy, pričom

sme využili Voronoiove diagramy a ich zovšeobecnenia - mocninné diagramy. Úlohu týchto

diagramov pri konštruovaní efektívnych Minimum-distance návrhov vysvetľujeme odvo-

dením niektorých ich kľúčových teoretických vlastností. Výkon tejto heuristiky v oboch

prípadoch ohraničení vyhodnocujeme vzhľadom na konkurenčné algoritmy v numerických

štúdiách.

vii

Kľúčové slová: navrhovanie experimentov, optimálny návrh, lineárne ohraničený návrh,

kritérium D-optimality, multiplikatívny algoritmus, výmenný algoritmus, Voronoiov dia-

gram.

viii

Abstract

BENKOVÁ, Eva. Algorithms for computing optimal designs of experiments under con-

straints [dissertation thesis]. Comenius University in Bratislava. Faculty of Mathematics,

Physics and Informatics; Department of Applied Mathematics and Statistics. Supervisor:

doc. Mgr. Radoslav Harman, PhD. Bratislava 2022, 111 pages.

In this dissertation thesis, we study several problems of finding the optimal experi-

mental design under various design constraints. First, we introduce a multiplicative al-

gorithm for constructing D-optimal approximate size- and cost-constrained designs, that

is, designs restricted on the number of trials and, simultaneously, on the total cost of

the experiment. The proposed method is a non-trivial specification of the “barycentric”

algorithm introduced in [31], which includes also reducing the design space by removal

of unnecessary design points. We analytically prove its convergence and demonstrate its

performance in comparison to the competing methods.

A different type of linearly constrained designs are space-filling designs frequently

used in computer experiments. We propose a general exchange-type heuristic framework

for computing exact designs, which is based on the notion of “privacy sets” and can be

adapted for various space-filling restrictions. Our specification of the framework for the

so-called Bridge designs significantly outperforms the state-of-the-art method. Moreover,

we implemented the general framework for the so-called Minimum-distance designs by the

use of Voronoi diagrams and their generalizations - power diagrams. We explain the role

of these diagrams in constructing efficient Minimum-distance designs by deriving some

crucial theoretical properties. Performance of the heuristic for both kinds of constraints

is compared against competing algorithms in numerical studies.

Key words: design of experiments, optimal design, linearly constrained design, D-

optimality criterion, multiplicative algorithm, exchange algorithm, Voronoi diagram.

ix

Contents

I Introduction 1

1 Design of experiments . 1

2 Standard designs . 3

3 Optimal designs . 7

3.1 State of the art . 8

4 Goals of the thesis . 12

5 Outline . 13

II Size- and cost-constrained designs 15

1 Preliminaries . 16

1.1 Linear constraints . 16

1.2 Optimal design theory . 17

1.3 Barycentric algorithm for linearly constrained designs 22

2 Size- and cost-constrained designs . 24

3 Theoretical results for approximate D-optimal size- and cost-constrained

designs . 29

4 The S&C algorithm . 33

5 Numerical study . 36

6 Miscellaneaous remarks . 41

6.1 A pair of general positive linear constraints 41

6.2 Cost minimization with a prescribed information matrix 43

6.3 Relations to stratified D-optimality 43

6.4 A re-normalization method . 44

6.5 The middle role of the S&C algorithm 45

x

IIIPrivacy sets 46

1 Preliminaries . 46

1.1 Space-filling designs . 47

2 Privacy sets . 51

2.1 Privacy Sets Algorithm . 54

3 Privacy sets for Bridge designs . 56

3.1 Examples: D-optimal Bridge designs on a cubical design space . . . 58

3.2 Space-filling designs on a constrained design space 61

4 Privacy sets for Minimum-distance designs 67

4.1 Motivation . 67

4.2 Voronoi diagrams and Delaunay triangulations 68

4.3 Power diagrams and regular triangulations 74

4.4 Computing VDs and DTs . 83

4.5 Computing PDs and RTs: Generalized Bowyer-Watson incremental

algorithm . 85

4.6 Implementation of PSA for Minimum-distance designs 88

4.7 Examples . 90

IV Results, conclusions and outlook 101

1 Main results . 101

2 Future research . 102

xi

Chapter I

Introduction

1 Design of experiments

One of the most common tasks of statistics as a scientific discipline is to explain depen-

dence of the so-called output (dependent) variables on the set of input (independent)

variables. The aim of design of experiments (or experimental design) is to determine the

values of the input variables, in case these are not already given and can be regulated

by the experimenter. The experiment itself consists of a series of trials (called also runs

or measurements), with each trial representing a certain combination of the input pa-

rameter settings. The main interest may vary - from estimating unknown parameters as

precisely as possible, through predicting the output value for a given input, to finding a

minimum/maximum of the output function - which leads to various approaches.

Let y be an observed output value of a single trial of an experiment believed to depend

upon d explanatory, input variables x1, . . . , xd, called also the factors. The individual

factors typically take values in the bounded intervals whose boundaries may be given for

example by the physical limitations of the system or by the interests of the experimenter.

For instance, for safety reasons, participants in clinical trials may not be given doses of the

medicaments that might be considered toxic. It may be convenient to scale the individual

intervals of permissible values into the interval [0, 1], or [−1, 1].

The resulting set of permissible combinations of factor values - called also a design

region or a design space - is then the d-dimensional standardized hypercube [0, 1]d (or

[−1, 1]d). In implementations it is typical to discretize a cubical design space into an

1

equally-spaced grid of size Ld, where L ∈ N is a suitably chosen constant. This results

in finitely many points of the design space, which is a necessary condition for many

algorithms for computing designs.

Sometimes it is necessary to restrict the design space by some additional constraints,

leading to the design spaces of a non-cubic shape. This thesis deals with the so-called

constrained experimental design, which should not be mistaken with the constrained de-

sign regions. In fact, it is not uncommon that both kinds of restrictions are present at

the same time, see, e.g., Figures 3.6 and 3.7 of Chapter III.

Principles of experimental design were established by Fisher in 1935 [26]. Although

the great part of this pioneering work was focused on the use of statistical methods in

agriculture, nowadays the design of experiments has its applications across the scientific

disciplines - mostly in natural and social sciences, engineering, marketing and policy

making.

One of the principles of [26] is a so-called randomization, which means, for example, a

random assignment of treatments to individuals from a population of interest in clinical

trials. In other words, the group receiving one kind of a treatment has to be a random

sample from a larger population, so that the results of the experiment may be extended

to that population. Moreover, randomization helps to reduce probability of bias of the

estimated parameters in case some unobservable and uncontrollable covariates are present.

Another tool that can be useful is blocking : In some experiments, it is possible to

identify different groups of experimental units - “blocks”, such that the values of a covari-

ate z are similar within the blocks, but different for different blocks. The block effects are

typically nuisance parameters and their estimation is not of interest to the experimenter.

However, if the experimental units are correctly assigned to the blocks and block effects

are included in the statistical model, the model parameters are estimated with greater

precision.

By the term experimental design we intuitively understand composing the experiment

by choosing some points from the design space. Although the order of the selected points

may sometimes be of importance, in the thesis, we always consider cases where this

2

order plays no role. There are various admissible design representations: In practice, the

experimenter is allowed to perform only a certain number N of carefully selected trials.

This can be represented by an exact design, which is a selection of points of the design

space in which the trials are performed. Nonetheless, for a large N , one can provide only

a certain percentage of the measurements in a particular point, rather than specify the

exact number. This approach leads to the notion of an approximate design, which is in

fact a probability measure on the design space.

Since this thesis covers multiple design problems of quite heterogeneous character,

multiple definitions of an experimental design are required. We provide these definitions

together with more detailed introductions at the beginnings of Chapters II and III. For a

deeper insight into (optimal) experimental design, see, e.g., [1], [54], [24], [61].

This chapter provides a very brief introduction to design of experiments, with focus

on optimal experimental design theory, especially under various design constraints. Note

that every design is already restricted by a constraint: an exact design by the total

number of trials N , which cannot be exceeded; an approximate design by the total sum

of 100%, which are to be distributed among the points of the design space. Such designs

with one restriction are not considered as constrained. However, if more limitations are

present simultaneously (which can easily happen in practice), the standard techniques of

constructing designs have to be replaced by more appropriate methods.

Computing these constrained experimental designs is the main focus of the thesis.

The formal definitions of a constrained design can be found in the introductions to the

individual chapters, since the experimental design itself is defined in two different ways.

For now let us perceive these constraints simply as some additional restrictions posed on

the design.

2 Standard designs

This thesis focuses mainly on the topics of optimal experimental design. However, there

is a wide range of designs used throughout history, many of them not dealing with the

optimality criteria at all. Some of these “standard” or “classical” designs that have

3

Trial

number

x1 x2 x3 Treatment

combination

1 -1 -1 -1 (1)

2 +1 -1 -1 a

3 -1 +1 -1 b

4 -1 -1 +1 c

5 +1 +1 -1 ab

6 +1 -1 +1 ac

7 -1 +1 +1 bc

8 +1 +1 +1 abc

Table I.1: Full factorial design for d = 3. In the last column, the trials are labelled

by a letter-combination, where the letters a, b, c signify x1 = +1, x2 = +1, x3 = +1,

respectively.

been widely used by practitioners with good results are presented in this section. As for

literature, the information contained in this section is taken mostly from [1].

Let us have d factors that span the interval [−1, 1] (after scaling). The full factorial

design typically consists of all combinations of the two extreme levels −1, 1 for each factor,

resulting in 2d trials in total. An example of such a design for d = 3 is given in Table

I.1 where the individual runs are ordered in the standard way and should be randomized

when performing an actual experiment.

Fisher’s work [26] argued that factorial designs offer several advantages compared to

the one-factor-at-a-time (OFAT) experiments, which vary only one factor at a time while

keeping the other factors constant. Factorial designs are more efficient in the sense of

providing more information at the same cost. Moreover, in contrast to OFAT, they are

able to detect interactions between the factors.

Naturally, the factorial designs varying two levels for each factor are useful if the

relationship between the factors x1, . . . , xd and the response y is linear. In this case,

the factorial designs are orthogonal, which means that the individual parameters can

be estimated without any correlation. That is, the covariance matrix of the parameter

4

estimates is diagonal, and so is the information matrix of the design (see definitions (2.3)

in Chapter II and (3.3) in Chapter III). This is advantageous, e.g., when there are non-

significant terms in the model - the parameters do not have to be re-estimated after the

deletion.

In case the dependence of the output variables on the input factors is not linear, the

model can be augmented by quadratic terms. In order to check whether such terms are

needed in the model or not, there are often a few (three or four) “centre points” added

to the design. These points take values xj = 0 for one or more j ∈ {1, . . . , d}. Some

methods alternative to the replication of the centre point are described for example in

Sections 19 and 20 of [1].

A disadvantage of full factorial designs is their size (the number of trials), which grows

rapidly with higher dimensions. Their large size allows them to quite precisely estimate

all higher-order interactions. However, if these interactions are known to be negligible, it

is enough to run only a fraction of the complete 2d trials without losing much information.

Fractional factorial designs enable the significant reduction of the number of the total

runs: 2d original design points are divided into 2f blocks of size 2d−f and only one of

the blocks is run during the experiment. As a result, the same linear combinations of

the observations estimate multiple (specifically 2f) parameters of the original model. In

order to decrease the sample size, the information about the higher-order interactions is

sacrificed - it is confounded with the blocks.

For an example of a fractional factorial design see Table I.2. The 8 treatments of the

full factorial design displayed in Table I.1 are divided into 2 blocks of 4 treatments each.

Since by running one of the blocks we obtain only 4 observations to 8 unknown parameters,

there are always two parameters that are estimated by the same linear combination of the

4 responses (eventually multiplied by (−1) - depending on the chosen block). For more

details see, e.g., Section 7.4 in [1].

A disadvantage of the fractional factorial designs is that they are quite restrictive -

the number of runs must be the power of 2. In [56], orthogonal designs of sizes that are

multiples of 4 are proposed, up to the sample size of 100 (with the exception of 92). The

5

Block

number

Treatment combinations

1 a b c abc

2 (1) ab ac bc

Table I.2: 23 treatment combinations from Table I.1 divided into two blocks.

idea of these Plackett-Burman designs is that for any two factors, all 4 combinations of

the two levels −1,+1 appear the same number of times, see Table I.3 for illustration. If

the sample size is a power of 2, Plackett-Burman design is identical with the (fractional)

factorial design.

Trial

number

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 + + - + + + - - - + -

2 - + + - + + + - - - +

3 + - + + - + + + - - -

4 - + - + + - + + + - -

5 - - + - + + - + + + -

6 - - - + - + + - + + +

7 + - - - + - + + - + +

8 + + - - - + - + + - +

9 + + + - - - + - + + -

10 - + + + - - - + - + +

11 + - + + + - - - + - +

12 - - - - - - - - - - -

Table I.3: Plackett-Burman design for 12 runs and up to d = 11 factors. The signs “−,+”

stand for the lower and the upper boundaries −1,+1, respectively. In case less than 11

factors are present, the corresponding subset of the columns of the table is run.

If a second-order polynomial model is to be fitted, more than just two levels for each

factor have to be considered. One solution would be to use a 3d factorial design, with

6

each factor varying over -1,0 and 1. This method, however, produces an excessive number

of trials for larger d. So-called composite designs can be used instead and consist of 2d−f

fractional factorial design points (f ≥ 0) augmented by 2d “star” points. Star points have

d− 1 zero coordinates and one coordinate with 1 or −1 value. If a few centre points are

included in the design as well, we talk about central composite designs.

3 Optimal designs

Clearly, the standard experimental designs described in the previous section provide sev-

eral advantages: They are simple enough to be directly applied, yet still yielding sat-

isfactory results in many cases. On the other hand, there is little that we know about

their actual efficiency, i.e., how “well” they perform in comparison to other designs. The

quality of a “good” design is discussed below.

Let us now formalize the dependence of y on x by the linear regression model

y(x) = f(x)>β + ε(x), (1.1)

where

� y(x) is an observation in design point x ∈ X ,

� f(x) ∈ Rm is the value of a known regressor in design point x,

� β ∈ Rm is a vector of unknown parameters.

We assume that the errors ε(x), x ∈ X , have mean value equal to 0, variance equal to

some positive constant σ2 < ∞, and trials are performed independently. Moreover, for

simplicity we require that span{f(x) : x ∈ X} = Rm and f(x) 6= 0m for all x ∈ X .

Assume now the linear regression model with one unknown parameter, that is, m = 1.

It is a known result of the Gauss-Markov theorem, that the least squares estimator is

the best linear unbiased estimator (BLUE), in the sense of having the minimum variance.

The reciprocal of this variance is called also the “Fisher information”, which suggests that

minimizing the variance equals maximizing the information. In optimal experimental

design, a design is considered to be good if the variance of the parameter estimates is

7

small, that is, if the information gained by performing the experiment is large (in the best

case of the minimal variance and the maximal information, the design is optimal).

In the vast majority of real-life examples, however, there are several parameters in the

linear regression model (m ≥ 2). The corresponding variance of this vector of parameters

is a matrix and “minimizing a matrix” is an intricate problem that can be handled in

multiple ways. The diversity of approaches is mirrored in the diverse objective functions

(called also the criteria of optimality). In all of these cases, an optimal experimental design

solves an optimization problem of “minimizing” the covariance matrix of the parameters,

or, equivalently, of “maximizing” its inverse - the information matrix (see (2.3) in Chapter

II and (3.3) in Chapter III for formal definitions).

We note that what we use as a measure of the quality of a design is one of many

possible assessments of a design - the one based on the information matrix of a design.

The information matrix describes the amount of information on the unknown parameters

of the statistical model 1.1, therefore we also use term model-based designs.

The theory of optimal design offers a new insight into the popular standard designs

discussed in the previous section: Some designs such as factorial designs or Plackett-

Burman designs are in fact D-optimal (see definitions 2.6 in Chapter II and 3.4 in Chapter

III) for the regression model with first-order terms. Under more complicated conditions,

such as a constrained design region or a constrained design itself, the standard designs

might be impermissible and appropriate algorithms need to be employed to find the

optimal (or nearly optimal) designs.

3.1 State of the art

The pioneering paper on optimal experimental design was [68], in which Danish statis-

tician Kirstine Smith proposed optimal designs for one-factor polynomial models. Since

then, this field of statistics has progressed in many directions. This thesis is aimed mainly

at the algorithms for the computation of optimal designs, since these are an inevitable

part of incorporating the optimal design theory into practice.

The methods of computing exact designs (allocating N design points in a design space

X) and approximate designs (assigning the points in X percentages instead of the concrete

8

quantities) are typically fundamentally different. In below, we list some of the methods of

constructing approximate and exact designs both with focus on the constrained designs,

in the respective order.

Finding an optimal approximate design is in fact for many criteria a special case of

convex optimization. Therefore, naturally, many approximate design algorithms incor-

porate ideas of this research field. The classical example is the so-called vertex-direction

algorithm (a special case of the so-called Frank-Wolfe algorithm), which is based on the

steepest ascent method and was first introduced in [24] and in [84] (for D-optimal de-

signs). In [83], its convergence for more general design criteria is proven. This first-order

iterative method can be modified for any linearly constrained designs as well (see [14],

[23]) and can be applied to various optimality criteria.

Another approach to computing approximate optimal designs under multiple con-

straints is to use a standard algorithm applied to the primary criterion modified by a

penalty term (see [7]). An advantage of this approach is that it can be applied to a gen-

eral criterion and non-linear convex constraints. However, the designs which the algorithm

produces are guaranteed to be permissible only asymptotically, with increasing magnitude

of the penalty term. Moreover, the variables of the algorithm cannot be directly used for

statistically interpretable stopping rules.

Another class of methods is motivated by the fact that an optimal design under convex

constraints can be found by maximizing a compound criterion or by the closely related

analytic technique of Lagrange multipliers (e.g., [47], [16], [14], [71], [43]). The most

problematic aspect of these methods is that the parameters which define the compound

criterion, or the Lagrange multipliers, are not known in advance, and they must be deter-

mined by a separate method, which is usually iterative. The advantages and disadvantages

of this approach are similar to the penalty approach.

The so-called barycentric multiplicative algorithm proposed in [31] has favourable

properties similar to standard multiplicative algorithms ([66], [70], [72], [17], [73], [85]) -

easy implementation, low memory requirements. This method is designed to deal with

specific design constraints, yielding for example stratified designs, as demonstrated in

[31]. Under mild technical conditions, its monotonic convergence to the optimum can

9

be proved. Moreover, the barycentric algorithm can be seamlessly combined with stop-

ping rules based on statistically natural efficiency as well as with “deletion rules” for the

removal of redundant design points, which greatly enhances the speed of the computa-

tion (cf. [35]). The barycentric multiplicative algorithm computing so-called size- and

cost-constrained designs is the main object of Chapter II and was proposed in [33].

Another choice are modern methods of mathematical programming, such as maxdet

programming ([77]), semidefinite programming (SDP, cf. [5]) or second-order cone pro-

gramming ([64]). Although these algorithms are very versatile, their time and memory

requirements grow steeply with increasing size of the problem. Furthermore, they require

advanced software tools and their practical application can be technically challenging.

Also, it is not straightforward to combine these methods with statistically meaningful

stopping rules.

In real-life problems, only exact designs with a given number of trials N can be used

for an actual experiment. In order to find a “good” exact design, one can use an optimal

approximate design, which allots a fraction (percentage) of all performed measurements

to each point. For a given N , however, distributing measurements according to an ap-

proximate design may yield a non-integer number of trials in one or more points of the

design space. This can be solved by employing a rounding method (see [41], [62]), which

“rounds” an approximate design to the closest exact design of a given size N , where var-

ious ways of interpreting the “closeness” are possible. However, if the number of trials N

is rather small, this approximation is not very efficient and we should focus directly on

exact designs instead.

In case of the restricted designs, the rounding becomes even more difficult with no

appropriate universal method available. In situations such as, e.g., the case with no

replicated observations in the same design point (see Chapter III), rounding an optimal

approximate design can be very inefficient and it is better to use one of the methods of

computing optimal exact designs of size N (with respect to the constraints). Some of the

adequate methods are listed in the following.

Finding an optimal exact design is in general a complex problem with many local

optima, unless n and N are very small numbers, which permits the complete enumeration

of all exact designs. For finite design spaces of size n, one could use for instance an

10

“intelligent” enumeration method, such as branch-and-bound or branch-and-cut, that

guarantees a globally optimal solution (see [79], [64], [34]). Nevertheless, these methods

tend to get extremely slow for larger design problems.

From a practical point of view, it is often worth to search for a design with high

efficiency rather than for an optimal exact design. Various heuristics and nature-inspired

algorithms can be used to find a “good-enough” design with much less computational

effort (see, e.g., [24], [48], [30], [46]).

Many of these heuristics are based on the idea of adding and deleting points so that

the current design is improving. For example, DETMAX algorithm ([48]) performs “ex-

cursions” of various sizes in which a chosen number of points is sequentially added and

then deleted. In [80], its modification is used to solve replication-free design problems.

Nowadays, one of the most popular methods for solving the standard optimal design

problems are the local-search exchange algorithms (see Chapter 12 in [1] and [28]). They

extend the idea of DETMAX procedure by considering the operations of addition and

deletion at the same time, see, e.g., KL-exchange algorithm described in Section 12.6

in [1]. However, the application of exchange methods on constrained design problems

is in general rather limited. The main difficulty is that performing an exchange on a

permissible design can easily yield an impermissible design. One should thus try to

exchange the points wisely, taking the specific restrictions into account.

One of the most broadly applicable algorithms for constrained exact designs is pro-

posed in [32]. This heuristic method assumes a finite design space of a “reasonable” size

n. This so-called resource constraints heuristic is described in more detail in Section 4.7

of Chapter III, where its performance is compared to our own method for a specific type

of linear constraints.

A great part of the thesis is devoted to the search for so-called space-filling designs. The

usual space-filling approach, however, does not include optimizing a statistical criterion

or posing restrictions on design. Hence, there are not many methods for computing

constrained optimal designs in this research area. One exception is the algorithm proposed

in [39], which deals with the so-called Bridge designs and the criterion of D-optimality.

11

The cited paper is in some sense the starting point for our own algorithms presented in

Chapter III.

4 Goals of the thesis

In the past, the research related to the computation of optimal experimental designs

focused mostly on situations with a single linear constraint that can be interpreted as a

limit on the “size” of the experiment. However, experimental situations with multiple

constraints do occur in practice; they can represent restrictions on the availability of

various resources consumed by the experiment. Although useful for applications, efficient

numerical methods for computing optimal designs under non-standard constraints receive

only sporadic attention (apart from the literature cited above, see also [69], [52], [82]).

The reason is that multiple constraints on experimental design pose challenging problems

of theoretical as well as computational nature.

One of the aims of the thesis can be formulated as follows:

� Propose an algorithm of the multiplicative type for computing approximate D-

optimal designs under a pair of linear restrictions, which can be interpreted as

simultaneous constraints on the size and on the total cost of the experiment. This

can be viewed as the simplest problem in optimal design beyond the standard case

of a single linear constraint. Base the proposed method on the barycentric algorithm

introduced in [31] and prove its convergence for this specific case.

Many of the classic problems of design of experiments can be formulated in terms of

the constrained designs, even though it is not the usual approach in the particular design

field. For instance, most of the literature on space-filling designs attempts to achieve its

aim by optimizing a prescribed objective measuring a degree of space-fillingness, such as

maximin, minimax, etc., sometimes combined with an estimation or prediction oriented

criterion (like suggested in [49]). Let us label those as soft space-filling methods. In

contrast, hard space-filling methods ensure desirable properties by enforcing constraints

on the designs, such that a secondary criterion can be used for optimization (e.g., D-

optimality in case of the Bridge designs of [39]). This leads us to the following objective:

12

� Propose a general framework for a hard space-filling method of an exchange type,

based on the central notion of so-called privacy sets. Privacy sets represent a wide

range of different, mostly space-filling, design constraints and allow for an efficient

and elegant formulation of the algorithms.

� Specify the proposed framework for the class of Bridge designs and compare the

proposed algorithm to the state-of-the-art method ([39]).

The idea of space-filling itself suggests spreading the design points apart from each

other. Since, as discussed above, the usual space-filling approach is focused primarily

on the target function to be optimized, the exact formulation of the appropriate design

constraints is missing. Thus, we establish the following goal:

� Define a new class of so-called Minimum-distance designs and specify the proposed

framework accordingly. In order to propose an efficient functional algorithm, utilize

the so-called Voronoi diagrams and their weighted generalizations called power dia-

grams and provide theoretical justification for their implementation in the method.

Finally, evaluate the performance of the proposed algorithm against the other rele-

vant methods.

5 Outline

Apart from the introductory Chapter I, this thesis consists of two main chapters.

Chapter II deals with approximate designs under simultaneous size- and cost-restric-

tions. We start the chapter with the formal definition of an experimental design that is

worked with throughout this chapter. Section 1 unifies necessary preliminaries by intro-

ducing the linearly constrained designs, providing fundamentals of optimal experimental

design and finally describing the general barycentric multiplicative algorithm that we

elaborate on in the sequel. In Section, 2 we justify the notion of a D-optimal size- and

cost-constrained design and formulate the key optimization problem (2.16). In Section

3, we provide selected theoretical results for the problem (2.16), including the so-called

equivalence theorem and the deletion rules. Section 4 describes a barycentric algorithm

for computing designs solving (2.16), called S&C algorithm. Section 5 gives a more com-

plex example of a D-optimal size- and cost-constrained design, provides a numerical study

13

exploring the behaviour of the proposed S&C algorithm and compares its performance to

the selected competing methods. In Section 6, we provide miscellaneous short remarks

related to the constrained optimal design problems (2.13) and (2.16).

Chapter III is oriented on exact space-filling designs restricted by privacy sets of the

individual design points. At the beginning of the chapter, we provide the definition

of an exact design with no replications that will be used throughout this chapter. We

continue with Section 1, in which we specify the linear constraints as well as some of the

fundamental optimal design notions for that particular definition of a design. Short but

crucial Section 2 includes the definition of privacy sets, which are the key concept in the

so-called Privacy Sets Algorithm (PSA) - a general framework dealing with a wide range

of space-filling constraints. In Section 3, we propose a specific version of PSA for the class

of Bridge designs and apply the method to examples of various kind. Finally, in Section 4,

we specify PSA for another type of space-filling designs, the so-called Minimum-distance

designs. We base the algorithm on Voronoi diagrams, theoretically justify their use and

evaluate the algorithm against other available methods.

Some of the results of the thesis have already been published: Chapter II has been

addressed in [33]. Sections 2 and 3 of Chapter III have been published in [6] and in [50].

14

Chapter II

Size- and cost-constrained designs

All the results presented in this chapter are based on the paper [33]. We refer the reader

to this paper for the proofs of the provided theorems.

The discussion in the introductory Chapter I justifies various design representations

as relevant. Let us have a design space X and a required number of measurements N ∈ N.

For N large enough it is possible to apply the so-called approximate design theory, viewing

a design as a probability measure on X with a finite support, which leads to a simpler

problem of convex optimization. In other words, there are finitely many points in X with

a positive design “weight” assigned, and the overall sum of the weights is 1. Negative

weights are not permitted.

If |X | = n, we can identify this probability measure with an n-dimensional vector w

with its coordinate wx ≥ 0 denoting a weight of design point x ∈ X , that is,∑
x∈X

wx = 1, wx ≥ 0 for all x ∈ X . (2.1)

In this relaxation of the original problem with N trials, weight wx represents an ap-

proximate ratio of trials performed in the point x to the total number of trials. From

a geometric point of view, the set of all approximate designs on a finite X forms a unit

probability simplex in Rn. We denote this simplex by Pn. In this chapter, we always

assume a finite design space X and represent a design by an n-dimensional vector w.

In contrast to approximate designs, an exact design of size N ∈ N has to satisfy 2.1

and

wx = Nx/N, Nx ∈ {0, 1, . . . , N} for all x ∈ X , and
∑
x∈X

Nx = N,

15

where Nx represents the number of trials performed in x ∈ X . However, since this chapter

deals with a special problem of approximate designs, w always denotes an approximate

design rather than an exact design. Geometrically, the set of all permissible exact designs

of size N forms a discrete subset of Pn.

1 Preliminaries

In this section, we provide some general information on the (constrained) experimental

design, as well as more recent results that are key for our work. We do not provide our

own results in this section.

1.1 Linear constraints

When performing an experiment, it often happens that one is limited by some restrictions

additional to the maximum allowed number of measurements, i.e., multiple constraints

are present. Design problems with multiple constraints are in general difficult, especially

for a large design space, even when the constraints are linear ([14]). For instance, even

finding a single permissible exact design (or proving that there is no such a design) may

be very challenging.

Design w is called linearly constrained, if it satisfies (2.1) and∑
x∈X

axjwx ≤ bj, for j = 1, . . . , l, (2.2)

where l ∈ N and axj, bj ∈ R are given constants.

For a finite X of size n, the set of all permissible approximate designs forms a convex

polytope Qn ⊆ Pn (we will use this universal notation for all kinds of linearly constrained

designs).

Let us provide a brief overview of some of the most common linear restrictions. All

of the below-mentioned constraints do occur in practise, and there are still many that

could be added on the list. We introduce mostly those constraints that receive particular

attention in the thesis, some of them more than the others. In addition, there is a

group of so-called space-filling designs defined in Chapter III - these are typically exact

16

designs whose definition in terms of the approximate design vector w would be needlessly

complicated and somewhat unnatural.

First note that the original restriction on the number of trials (2.1) is clearly a special

case of (2.2) for l = 1, b1 = 1 and ax1 = 1 for all x ∈ X with a sign of equality instead of

inequality.

Assume now there are positive unequal costs cx corresponding to trials in points x ∈ X ,

and our budget is limited (see, e.g., Section 6 in [22]). This restriction can be formalized

by one constraint (2.2), such that values ax1 = cx represent possibly unequal normalized

costs of trials in individual design points and b1 = 1. Any permissible design must then

satisfy two constraints: the “size” constraint and the “cost” constraint. This situation is

in detail discussed in this chapter, where an efficient multiplicative algorithm computing

optimal approximate size- and cost-constrained designs is proposed.

A natural restriction is to limit the design weights in points x by some positive con-

stants sx, for all x ∈ X . These direct constraints (cf. [25], [80]) can be written in terms

of (2.2) by setting l = n, axy = δxy (the Kronecker delta) and by = sy for all x, y ∈ X .

For exact designs of size N , it is also usual to set sx = 1/N for all x ∈ X , yielding the

so-called replication-free designs. Note that in Chapter III, by defining a design as a set

(definition (3.1)), we automatically assume it to be replication-free.

Another class of constraints corresponds to the marginal restrictions (see, e.g., [15],

[42]) or, more generally, strata restrictions ([31]). In case of the latter, the design space X

is partitioned into non-overlapping sets X1, . . . ,Xk (called also strata or partitions) and

any design w must satisfy
∑

x∈Xj
wx ≤ sj for all j = 1, . . . , k, where s1, . . . , sk are given

positive weights. Here, we obtain (2.2) by setting l = k, axj = I[x ∈ Xj] (the indicator

function) and bj = sj for all j = 1, . . . , k.

1.2 Optimal design theory

We can now explicitly define the optimization problem outlined in Section 3 of Chapter I.

The aim of optimal experimental design as a statistical discipline is to solve this problem,

in order to ensure maximal informational yield from the experiment. First, we describe the

17

standard situation with one restriction (2.1) only, and put it into the context of linearly

constrained designs afterwards.

The aim of an experimenter is to obtain as much information about unknown param-

eters of the model 1.1 as possible. This means that we deal with an optimization problem

where the objective function is defined on the set of information matrices, where the

information matrix of design w is given by

M(w) =
∑
x∈X

wxMx, (2.3)

where Mx = f(x)f(x)> is a matrix of rank 1, representing information observed from

a single point x ∈ X . Note that for a non-singular information matrix, its inverse is

proportional to the covariance matrix of the best linear unbiased estimator (BLUE) of β.

Let M denote the set of all information matrices for a given regression function f .

In the sequel, design w is called regular if its information matrix M(w) is non-singular.

The objective function φ :M→ R to be maximized is called the optimality criterion and

has to be monotonic in the sense that

M(w1) �M(w2)⇒ φ(M(w1)) ≤ φ(M(w2)), w1,w2 ∈ Pn,

where the symbol “�” denotes Loewner ordering, i.e., M(w2) −M(w1) is a positive

semidefinite matrix. We most frequently write φ(w) instead of φ(M(w)), i.e., we omit

the symbol of information matrix from the input of the optimality criterion, if it is not

necessary. However, the meaning remains the same.

The efficiency of a design w1 relative to a design w2 is given by

effφ(w1|w2) =
φ(w1)

φ(w2)
. (2.4)

As definition (2.4) implies, the efficiency represents the statistical “quality” of design w1

compared to design w2. This is meaningful if the optimality criterion is positively homo-

geneous : For every α > 0 and for every w ∈ Pn it holds that φ(αM(w)) = αφ(M(w)). In

that case, the inverse value effφ(w1|w2)−1 says how many times we need to perform the

experiment conducted by w1 in order to gain the same amount of information as from

the experiment conducted by w2.

18

Usually, it is our concern to compare a design w to an optimal design w∗ that maxi-

mizes the optimality criterion φ:

w∗ ∈ arg max
w∈Pn

φ(w).

In this case, we have effφ(w|w∗) ≤ 1.

For linearly constrained designs, the optimization is restricted to the convex polytope

Qn leading to

w∗ ∈ arg max
w∈Qn

φ(w). (2.5)

It is sensible to set the linear restrictions so that there exists a regular design w ∈ Qn.

For some models the optimal solution of (2.5) is not unique, but the set of all optimal

solutions is convex.

In this work, we focus mainly on the most common criterion called D-optimality

criterion. It can be in principle defined in several ways, all of them being increasing

functions of the determinant of the information matrix. We prefer the following definition

(2.6) which ensures the positive homogeneity of D-optimality criterion:

φD(w) = det1/m(M(w)), w ∈ Pn. (2.6)

It is possible to show that the D-optimality criterion is concave and continuous (see, e.g.,

[53]). The statistical interpretation is that any D-optimal design minimizes the volume

of the confidence ellipsoid of the vector of parameters β. In case there exists a regular

design w ∈ Qn, the optimal criterial value φD(w∗) is strictly positive.

Another popular criterion is A-optimality defined for a regular design w by

φA(w) = 1/tr(M(w)−1), w ∈ Pn.

For a singular design w, we set φA(w) = 0. An A-optimal design minimizes the average

variance of the parameter estimates.

1.2.1 The equivalence theorem

The general equivalence theorem is a fundamental theorem in the theory of approximate

experimental designs. It provides necessary and sufficient conditions for a design to be

19

optimal. Moreover, it also enables one to develop algorithms converging to the global

optimum.

For any design w ∈ Pn, let ∇φ(M(w)) be the gradient of criterion φ in M(w) given

by

∇φij(M(w)) =
∂φ(M(w))

∂Mij(w)
, i, j = 1, . . . ,m.

Let ψ(w, w̄) be the directional derivative of function φ at approximate design vector

w ∈ Pn in the direction of design w̄ ∈ Pn, that is

ψ(w, w̄) = lim
α→0+

1

α
[φ ((1− α)M(w) + αM(w̄))− φ(M(w))] .

Now put w̄ = e(x) for some x ∈ X , i.e., e(x) is the standard unit vector with its coordinate

1 corresponding to x. In this case we will use notation ψ(w, x) = ψ(w, e(x)).

It can be shown that if ∇φ(M(w)) exists then the directional derivative ψ(w, x) can

be computed as

ψ(w, x) = f>(x)∇φ(M(w))f(x)− tr{M(w)∇φ(M(w))}.

The following theorem is a general form of the so-called equivalence theorem for any

concave optimality criterion and it can be proved for instance by using Karush-Kuhn-

Tucker conditions (see [10]).

Theorem 1.1 Let φ be a concave optimality criterion and let ∇φ(M(w)) exist for every

w ∈ Pn, x ∈ X . Then, approximate design w∗ is optimal in Pn iff

max
x∈X

ψ(w∗, x) ≤ 0.

It can be further shown that in case of an optimal design w∗, there is the equality sign

in 1.1, that is, maxx∈X ψ(w∗, x) = 0, and the maximum occurs at the support points of

design w∗. For any design w that is non-optimal, it holds that maxx∈X ψ(w, x) > 0.

In this chapter we assume finite design spaces |X | = n. However, this assumption is

not inevitable for the equivalence theorem; in fact, equivalence theorem can be proved for

any design space X that is compact.

In the specific case of the D-optimality criterion, for every w ∈ Pn the gradient can

be computed as ∇φD(M(w)) = 1/m det1/m(M(w))M−1(w), which implies the following

form of Theorem 1.1.

20

Theorem 1.2 Approximate design w∗ is D-optimal in Pn iff

max
x∈X

dx(w
∗) ≤ m,

where

dx(w) = f>(x)M−1(w)f(x) (2.7)

denotes the so-called variance function in design point x. In our work, we also use d(w) to

denote the n-dimensional vector with components dx(w). In the standard linear regression

model with regressors f(x), x ∈ X , and homoscedastic uncorrelated errors, value dx(w)

is proportional to the variance of the predicted response at point x under design w, see,

e.g., [23] or [1].

The criterion of D-optimality can be proven to be strictly concave on the set of regular

information matrices. This implies that the optimal information matrix is unique, in

contrast to a D-optimal design, which is not unique in general, but the set of D-optimal

designs is convex. Additionally, it holds that there exists a D-optimal design containing

at most m(m+ 1)/2 supporting points (see, e.g., [14]).

Theorem 1.2 justifies the use of the following vertex-direction procedure to find the

approximate D-optimal design. This algorithm can be employed in the standard case as

well as in case of the linearly restricted designs. We focus on the latter and thus optimize

on the set of constrained designs Qn. We remark that we describe this method (see [14])

for its straightforwardness and simplicity; there are other more complex and more efficient

methods listed in Section 3.1 of Chapter I.

Assume there exists a regular design w ∈ Qn. Let {αt}∞t=0 be a sequence of positive

constants such that limt→∞ αt = 0 and
∑∞

t=0 αt = ∞. Now, starting in a permissible

design w(0), we can define an iterative procedure

w(t+1) = (1− αt)w(t) + αtw
∗
t , t = 0, 1, 2, . . . ,

where

w∗t ∈ arg max
w∈Qn

∑
x∈X

wxdx(w
(t)), (2.8)

where dx(.) is the variance function defined by (2.7).

21

In every iteration of the vertex-direction algorithm, we need to solve the linear pro-

gramming subproblem (2.8). This can be done for example using the simplex method.

Although the problem of linear programming is not difficult, it can still significantly slow

down the algorithm (compared to the standard case with no restrictions). Moreover, all

vertex-direction methods are considered to be rather slow and can be easily outperformed

by some of the competing methods, such as multiplicative algorithms or semidefinite

programming. Their advantage is that they are universal, easy to implement and their

convergence to the global optimum can be proved.

1.3 Barycentric algorithm for linearly constrained designs

For an overview of accessible algorithms for linearly constrained designs, we refer the

reader to Section 3.1 of Chapter I. In this chapter, we focus on the barycentric multi-

plicative algorithm as proposed in [31], which represents a starting point for the results

derived in the sequel. It concentrates on the criterion of D-optimality as defined in (2.6).

Let us now discuss the main idea and some of the properties of the algorithm.

Let {qx̃ : x̃ ∈ X̃}, where X̃ is a finite ordered set with ñ elements, be the set of all

extreme vectors of Qn. Let Pñ be a probability simplex of ñ-dimensional standard designs

constrained only by (2.1) . The barycentric algorithm works by alternating between the

“primary” set Qn and the “secondary” set Pñ, so we should keep the difference in mind.

Denote H̃ = {M(qx̃)}x̃∈X̃ . For a design w̃ ∈ Pñ, the amount of information obtained

from the entire experiment is proportional to the information matrix

MH̃(w̃) =
∑
x̃∈X̃

w̃x̃M(qx̃).

Then, we can defineDH̃-optimal design as any design w̃∗ ∈ Pñ that maximizes φD(MH̃(w̃)).

This problem belongs to the class of so-called generalized D-optimality problems, where

the information matrix is a convex combination of matrices of ranks not necessarily equal

to 1 (in contrast to the standard case (2.3)). From this point of view, one can apply all

the properties of generalized D-optimality (see [36], [74]), e.g.:

� There exists at least one DH̃-optimal design, the DH̃-optimal information matrix is

non-singular and unique.

22

� There exists a simple formula for a lower bound on the DH̃-efficiency of a given

design.

� There exist simple rules for identifying design points x̃ that do not support any

DH̃-optimal design.

Moreover, for computing DH̃-optimal designs, there is a straightforward generalization

of the standard multiplicative algorithm, for which it is proved that the sequence of

information matrices corresponding to individual iterations converges monotonically to

the DH̃-optimal information matrix ([85]).

The direct application of the multiplicative algorithm for DH̃-optimality requires op-

erating with ñ matrices M(qx̃) of size m × m, which can be numerically very difficult.

The idea in [31] is that the multiplicative transformation operating on Pñ can be used

only implicitly, with all the actual computations performed in the much smaller space Pn.

The key task is to transform design w ∈ Qn into design w̃ ∈ Pñ, that is, to find a

suitable formula for barycentric coordinates w̃(w) ∈ Pñ expressing a linearly constrained

design w ∈ Qn as a convex combination of the extreme designs qx̃, x̃ ∈ X̃ .

The general formula of the barycentric updating rule is

TB(w) = m−1D(w)d(w), (2.9)

where D(w) =
∑

x̃∈X̃ w̃x̃(w)qx̃q
>
x̃ and w̃ : Qn → Pñ is a continuous function, such that

w̃(w) represents barycentric coordinates of the constrained design w.

The barycentric updating rule first takes a design w ∈ Qn and finds its barycentric

coordinates w̃(w) in Pñ. Design w̃(w) is then transformed using the multiplicative algo-

rithm in the space Pñ, and finally put back into the original space Pn by expressing the

result in the standard coordinates again. All of this is included in the formula (2.9).

The monotonic convergence of the sequence {M(w(t))}∞t=1, w(t+1) = TB(w(t)), to some

matrix M∞ can be proved. However, for the general barycentric algorithm it is not proved

that the matrix M∞ is D-optimal.

23

For any ε > 0, we define

hm(ε) = m

(
1 +

ε

2
−
√
ε(4 + ε− 4/m)

2

)
. (2.10)

The following theorem is not inevitable for the barycentric algorithm itself, but can be

very useful: The inequality 1.3 provides a lower bound on the efficiency of any permissible

design, which can be used to adjust a reasonable efficiency-based stopping rule. The

inequality 1.3 can be used to accelerate the algorithm, since it allows us to completely

remove unnecessary design points.

Theorem 1.3 ([31]) Let Q = (qx̃)x̃∈X̃ be the n×ñ matrix composed of all extreme vectors

of Qn. Let w ∈ Qn be a regular design and let ε = maxx̃∈X̃ (Q>d(w))x̃−m. Let w∗ ∈ Qn

be a D-optimal constrained design. Then,

effD(w|w∗) ≥ m

m+ ε
.

Furthermore, w∗x = 0 for any x ∈ X satisfying

max
x̃∈X̃ :(qx̃)x>0

(Q>d(w))x̃ < hm(ε).

2 Size- and cost-constrained designs

The research of linearly constrained designs has its place in the area of optimal experimen-

tal design. Situations with multiple constraints do occur in practice; they can represent

limitations on the availability of various resources consumed by the experiment. One of

the simplest cases is the presence of one more linear constraint in addition to the “size”

restriction (2.1), as stated in Section 1.1. This additional constraint can be viewed as a

restriction on the “cost” of the experiment, yielding so-called size- and cost-constrained

designs that we deal with in this chapter.

To start with, we clarify how these two conditions are motivated by the real-life limita-

tions. The limit on the “size” of the experiment is a natural requirement and the research

related to the computation of optimal experimental designs used to focus mostly on these

single-linear-constraint problems. Now, assume for a while that we are about to conduct

an exact experiment consisting of at most N trials. If we denote wx = Nx/N , where Nx

24

is the number of the trials performed in x, the size constraint can be written as∑
x∈X

wx ≤ 1. (2.11)

Note that there is in fact no need to strictly require equality (2.1) and it is more natural

to use inequality (2.11) instead.

Now assume that each trial is associated with a known cost Cx > 0 depending on the

corresponding design point x ∈ X , and the total cost of the experiment cannot exceed a

given budget B > 0. For each x ∈ X , let cx = N
B
Cx be the normalized cost. Then, the

total cost constraint can be written in the form∑
x∈X

cxwx ≤ 1. (2.12)

If the values cx are the same for all x ∈ X then the design has, effectively, only a

single constraint. However, (2.11) and (2.12) may be both relevant if the costs of trials

are unequal, which often occurs in practice.

For instance, in an application described in [82], the design space X represents time,

and the cost of conducting a trial is a non-constant function of the time when the ob-

servation is sampled. Similarly, in [52], the design space is the set of all combinations of

factor levels, some of which are significantly more expensive than others.

In some situations, the interpretation of the coefficients cx may be different from direct

financial costs. For example, assume that each trial in x ∈ X consumes cx volume units

of a specific substrate, as in [87]. Then, the restriction on the total available volume of

the substrate can be captured by an inequality of the form (2.12). Yet another example

of constraints of the type (2.12) can be found in [19], [20] and [57], in which the design

space corresponds to treatment doses and the “costs” represent penalties for doses with

low efficacy and high toxicity.

Our goal is to propose a method of constructing a D-optimal design w∗ in the set

of all approximate designs that satisfy both the size and the cost constraints (2.11) and

(2.12), that is,

w∗ ∈ arg max
w
{φD(w) : w ≥ 0n, 1

>
nw ≤ 1, c>w ≤ 1}, (2.13)

25

where 0n is the n-dimensional zero vector, 1n is the n-dimensional vector of ones, c is the

vector of normalized cost coefficients and D-optimality criterion φD is given by (2.6).

We assume the linear model (1.1). Note that the vectors f(x), x ∈ X , can also be the

gradients of the mean-value function of a non-linear regression model. Then, the solution

of (2.13) is a size- and cost-constrained locally D-optimal design (see, e.g., Chapter 17 in

[1] or Chapter 5 in [60]).

Note that for the problem (2.13), the set of permissible designs is nonempty and

compact, therefore the continuity of φ implies that (2.13) has at least one optimal solution

w∗.

The assumptions of regularity and properties of φD imply that

arg max
w
{φD(w) : w ≥ 0n,1

>
nw ≤ 1} = arg max

w
{φD(w) : w ≥ 0n,1

>
nw = 1}. (2.14)

Thus, computing a D-optimal design under (2.11) is equivalent to computing a standard

D-optimal design, for which there exist many very efficient algorithms. Similarly, since

cx > 0 for all x ∈ X , we have

arg max
w
{φD(w) : w ≥ 0n, c

>w ≤ 1} = arg max
w
{φD(w) : w ≥ 0n, c

>w = 1}, (2.15)

which is a problem that can be transformed to (2.14) using a suitable change of regressors

f(x), x ∈ X ; see, e.g., [22] or [1]. However, constructing an approximate optimal design

under simultaneous size and cost constraints is less straightforward, as we discuss next.

Proposition 2.1 Let ws be optimal for the size-constrained problem (2.14) and let wc

be optimal for the cost-constrained problem (2.15). Then, either ws satisfies the cost

constraint (2.12), in which case it solves (2.13), or wc satisfies the size constraint (2.11),

in which case it solves (2.13), or there exists a solution w∗∗ of the problem (2.13) that

satisfies both ∑
x∈X

w∗∗x = 1, and∑
x∈X

cxw
∗∗
x = 1.

26

The previous discussion and Proposition 2.1 imply that once we are able to find a

solution of the “equality” size- and cost-constrained problem

w∗ ∈ arg max
w
{φ(w) : w ≥ 0n,1

>
nw = 1, c>w = 1}, (2.16)

we will have an exhaustive method of solving the practically usually more meaningful

“inequality” size- and cost-constrained problem (2.13). That is why we concentrate on

the problem (2.16) in the sequel and we refer to it as to the problem of D-optimal size-

and cost-constrained designs. The set of designs permissible for 2.16-2.16 is illustrated in

Figure 2.1.

Figure 2.1: Illustration of size and cost constraints in case |X | = 3. The blue triangle (2-

simplex) represents designs permissible for 2.16, while the red triangle represents designs

permissible for 2.16. Set Qn
+ (i.e., the set of designs satisfying both 2.16 and 2.16) is

denoted by the purple line segment with vertices q1,q2.

Let Qn denote the set of all permissible solutions of (2.16). If Qn is not empty,

it is a convex and compact polyhedron. At the beginning of Section 3, we add some

natural assumptions on the normalized costs cx, x ∈ X , that guarantee Qn 6= ∅. Then,

it is possible to prove a simple “equivalence theorem” for the D-optimal size- and cost-

constrained design solving (2.16), and some other theoretical properties, cf. Section 3.

Analytic solutions of (2.16) are possible only in the simplest cases (such as in the

illustrative Example 2.1 at the end of this section). However, there are several general

27

methods that can be used to develop an efficient algorithm specialized to solve (2.16).

Some of the most appropriate methods are listed in the introductory Chapter I.

Naturally, from the point of view of applications, the primary objective is to find an

exact experimental design with the number of elements bounded from above by some

N . When considering “inequalities” problem (2.13), the simplest solution is to “round

down” an approximate D-optimal design w∗ by replacing the values w∗x with bNw∗xc/N

for all x ∈ X , where b·c is the floor function. A more efficient solution can be obtained by

using an excursion heuristic such as the one proposed in [32], with the result of the simple

rounding taken as an initial permissible solution. Alternatively, it is possible to apply the

heuristic method from [34] based on integer quadratic programming, which utilizes the

information matrix of an approximate D-optimal design.

Before proceeding, we give a small example to illustrate some aspects of the problems

(2.13) and (2.16), in particular the fact that for the equality-constrained D-optimal design

problem (2.16) the values cx = 1 play special roles.

Example 2.1 Assume that n = 2, f(1) = (1, 0)>, f(2) = (1, 1)>. In this elementary

model, it is simple to verify that for a design w = (w1, w2)> the criterion of D-optimality

is proportional to
√
w1w2, and the solutions of both (2.13) and (2.16) can be calculated

analytically: the solution of (2.13) is

(w∗1, w
∗
2)> =


(0.5, 0.5)> if c1 + c2 ≤ 2,(
c2−1
c2−c1 ,

c1−1
c1−c2

)>
if c1 + c2 > 2 and 1

2c1
+ 1

2c2
> 1,(

1
2c1
, 1

2c2

)>
if 1

2c1
+ 1

2c2
≤ 1,

and the solution of (2.16) is

(w∗1, w
∗
2)> =

(0.5, 0.5)> if c1 = c2 = 1,(
c2−1
c2−c1 ,

c1−1
c1−c2

)>
if (c1, c2)> ∈ [(0, 1)× (1, 2)] ∪ [(1, 2)× (0, 1)].

In Figure 2.2, we plotted the values φD(w∗1, w
∗
2), as they depend on the costs c1 and

c2. For the inequality-constrained problem (2.13) illustrated in Figure 2.2a, the optimal

criterial values are continuous and non-decreasing for decreasing costs, as expected.

However, the optimal criterial values of the equality-constrained problem (2.16) behave

differently. First, in Figure 2.2b, the domain of the function is restricted to C = [(0, 1)×

28

(a) w1 + w2 ≤ 1, c1w1 + c2w2 ≤ 1 (b) w1 + w2 = 1, c1w1 + c2w2 = 1

Figure 2.2: The values of φD corresponding to the D-optimal designs with n = 2 design

points, regressors f(1) = (1, 0)>, f(2) = (1, 1)> and the costs c1, c2 varying in (0, 2).

(1, 2)]∪ [(1, 2)×(0, 1)]∪{(1, 1)} because for couples (c1, c2) ∈ [(0, 2)×(0, 2)]\C there is no

permissible solution of (2.16) or the optimal information matrix is singular. Moreover,

observe that it is not possible to continuously extend the function in Figure 2.2b to the

point (1, 1), although for c1 = c2 = 1 the optimization problem (2.16) is meaningful with

a unique solution. This phenomenon suggests that the points x ∈ X such that cx = 1 play

a special role. Finally, note that in Figure 2.2b the optimal criterial value can strictly

decrease with decreasing costs.

3 Theoretical results for approximate D-optimal size-

and cost-constrained designs

If cx ≤ 1 for all x ∈ X , i.e., if the costs of all trials are “low”, then every design satisfying

the size constraint (2.11) satisfies also the cost constraint (2.12), that is, an optimal

solution of (2.13) can be found as a solution of (2.14). Analogously, if cx ≥ 1 for all

x ∈ X , that is, if the costs of all trials are “high”, then every design satisfying the cost

constraint (2.12) satisfies also the size constraint (2.11), that is, an optimal solution of

(2.13) can be found as a solution of (2.15). Therefore, we can assume that there exist

x− ∈ X such that cx− < 1 and x+ ∈ X such that cx+ > 1.

Let X+ = {x ∈ X : cx > 1}, X− = {x ∈ X : cx < 1}, X0 = {x ∈ X : cx = 1}, and

let n+, n−, n0 be the sizes of these sets. Clearly, our assumptions mean that X+ 6= ∅ and

29

X− 6= ∅. For simplicity, in Sections 3 and 4, we will assume that X0 6= ∅; all results can

be modified in a straightforward way for the (simpler) case X0 = ∅.

Recall that the set of all permissible designs of (2.16) is denoted by Qn. We will use the

symbol Qn
+ to denote the set of all designs w ∈ Qn with all components strictly positive.

We will use the symbol Qn
r to denote the set of all designs w ∈ Qn with a non-singular

information matrix M(w). Clearly, the regularity assumptions imply Qn
+ ⊆ Qn

r .

Define δx+ = cx+ − 1 > 0 for x+ ∈ X+ and δx− = 1− cx− > 0 for x− ∈ X−. Consider

the design w(0) with components

w(0)
x+

= ñ−1
∑

x−∈X−

δx−
δx+ + δx−

; x+ ∈ X+, (2.17)

w(0)
x− = ñ−1

∑
x+∈X+

δx+
δx+ + δx−

; x− ∈ X−, (2.18)

w(0)
x0

= ñ−1; x0 ∈ X0, (2.19)

where ñ = n+n− + n0. It is straightforward to verify that w(0) is permissible for (2.16),

i.e., Qn 6= ∅. Moreover, w(0) ∈ Qn
+, that is, w(0) ∈ Qn

r . Hence, the information matrix of

the design optimal for (2.16) is non-singular. The strict concavity of det1/m(·) on the set

of all positive definite matrices (see [61]) guarantees that the optimal information matrix

is unique.

For any x+ ∈ X+, x− ∈ X− let

q(x+,x−) =
δx−

δx+ + δx−
e(x+) +

δx+
δx+ + δx−

e(x−)

and for any x0 ∈ X0 let q(x0) = e(x0), where e(x), x ∈ X , are standard unit vectors. It is

simple to show that

{q(x+,x−) : x+ ∈ X+, x− ∈ X−} ∪ {q(x0) : x0 ∈ X0}

is the set of all extreme vectors of the polytope Qn. In fact, the design w(0) defined by

(2.17)-(2.19) is the “center of mass” of these extreme vectors if they are assigned equal

weights. Note also that the form of the extreme vectors of Qn and the Caratheodory

theorem imply that for any design w ∈ Qn there exists a size- and cost-constrained

design with the same information matrix and the “support” of at most m(m + 1) non-

zero coordinates.

30

The following two definitions are used in the sequel to simplify the notation. For any

w ∈ Qn, we define

sδ(w) =
∑

x+∈X+

δx+wx+ =
∑

x−∈X−

δx−wx− . (2.20)

The second equality in (2.20) follows directly from (2.11) and (2.12). For any w ∈ Qn
r

and x+ ∈ X+, x− ∈ X−, we define the weighted variances

d̃x+x−(w) =
δx+dx−(w) + δx−dx+(w)

δx+ + δx−
. (2.21)

Theorem 3.1 Let w ∈ Qn
r . Then, the following three statements are equivalent:

(i) The design w is D-optimal in Qn.

(ii) There exists h ∈ R such that

dx(w) ≤ m+ h(cx − 1) for all x ∈ X .

(iii) maxx0∈X0 dx0(w) ≤ m and

max
x+∈X+

dx+(w)−m
δx+

+ max
x−∈X−

dx−(w)−m
δx−

≤ 0.

Proof

(i) ⇔ (ii) Consider D-optimality criterion defined by φD(w) = ln det(M(w)). Karush-

Kuhn-Tucker conditions and the concavity of φD(w) imply the following necessary and

sufficient condition for maximum at w: There exist constants λ, µ ∈ R and ν1, . . . , νn ≥ 0

such that for all x ∈ X
∂φD(M(w))

∂wx
= λ+ µcx − νx,

which is equivalent to

dx(w) = λ+ µcx − νx, (2.22)

since

∂φD(M(w))

∂wx
=

∂ ln(det(M(w)))

∂wx
=

m∑
i,j=1

∂ ln(det(M(w)))

∂Mij(w)

∂Mij(w)

∂wx

=
m∑

i,j=1

{M−1(w)}ijfi(x)fj(x) = f(x)>M−1(w)f(x) = dx(w).

By multiplying by wx and summing through x ∈ X we obtain∑
x

dx(w)wx = λ
∑
x

wx + µ
∑
x

cxwx −
∑
x

νxwx,

31

which yields m = λ+ µ. Substituting λ = m− µ into (2.22), we get dx(w) = m+ µ(cx −

1)− νx, which is equivalent to the part (ii) of the theorem.

(ii)⇔ (iii) The implication (ii)⇒ (iii) is straightforward to verify.

Note that for x0 ∈ X0 the condition (iii) is equivalent to the condition (ii). For

x+ ∈ X+, x− ∈ X− the condition (iii) is equivalent to: For all x+ ∈ X+ and x− ∈ X− we

have d̃x+x−(w) ≤ m. But it is simple to check that the values d̃x+x−(w) above have the

weighted average equal to m, if the weights are chosen to be

w̃x+x−(w) =
(δx+ + δx−)wx+wx−

sδ(w)
; x+ ∈ X+, x− ∈ X−.

∑
x+∈X+

∑
x−∈X−

(δx+ + δx−)wx+wx−
sδ(w)

d̃x+x−(w)

= {sδ}−1(w)

(∑
x+

wx+dx+(w)
∑
x−

wx−δx− +
∑
x+

wx+δx+
∑
x−

wx−dx−(w)

)
=

∑
x+

wx+dx+(w) +
∑
x−

wx−dx−(w) = m.

Hence, the inequality in part (iii) must be in fact equality. Thus, the condition (ii)

holds with h = maxx+∈X+ δ
−1
x+

(dx+(w)−m) = −maxx−∈X− δ
−1
x−(dx−(w)−m). �

The following theorem is a particular case of Theorem 1.3 for size- and cost-constrained

designs. It can be used with any permissible design w ∈ Qn
r to compute a lower bound

for its efficiency and remove the points from X that cannot be in the support of any

D-optimal size- and cost-constrained design.

Theorem 3.2 Let w ∈ Qn
r , let w∗ be a design that solves (2.16), and let

ε = max

(
max

x+∈X+,x−∈X−
d̃x+x−(w), max

x0∈X0

dx0(w)

)
−m.

Then, effD(w|w∗) ≥ m
m+ε

. Let hm(ε) be defined by (2.10). Then,

(i) maxx−∈X− d̃x+x−(w) < hm(ε) for some x+ ∈ X+ implies w∗x+ = 0.

(ii) maxx+∈X+ d̃x+x−(w) < hm(ε) for some x− ∈ X− implies w∗x− = 0.

(iii) dx0(w) < hm(ε) for some x0 ∈ X0 implies w∗x0 = 0.

The removal of redundant design points based on Theorem 3.2 can greatly enhance the

speed of numerical methods for computing optimal designs, including the S&C algorithm

derived in the next section.

32

4 The S&C algorithm

For the constraints (2.11) and (2.12), the barycentric transformation TB : Qn
r → Qn

r is

defined by (2.9), where

D(w) =
∑
x̃∈X̃

w̃x̃(w)qx̃q
>
x̃ =

∑
x+∈X+

∑
x−∈X−

w̃x+x−(w)q(x+,x−)(q(x+,x−))> +

∑
x0∈X0

w̃x0(w)q(x0)(q(x0))>. (2.23)

In (2.23), the functions w̃x+x− : Qn → R; x+ ∈ X+, x− ∈ X−, and w̃x0 : Qn → R; x0 ∈ X0,

are the barycentric coordinates, that is, they are non-negative and satisfy∑
x+∈X+

∑
x−∈X−

w̃x+x−(w) +
∑
x0∈X0

w̃x0(w) = 1, (2.24)∑
x+∈X+

∑
x−∈X−

w̃x+x−(w)q(x+,x−) +
∑
x0∈X0

w̃x0(w)q(x0) = w (2.25)

for all w ∈ Qn. For the general theory to be applicable, the barycentric coordinates must

be chosen such that they are continuous on Qn and strictly positive for any w ∈ Qn
+.

The barycentric coordinates are not uniquely defined, and not all choices of barycentric

coordinates are equally good. It turns out that for the problem (2.16) a suitable definition

of barycentric coordinates of w ∈ Qn is

w̃x+x−(w) =


(δx+ + δx−)wx+wx−

sδ(w)
if sδ(w) > 0,

0 if sδ(w) = 0,

(2.26)

w̃x0(w) = wx0 , (2.27)

for all x+ ∈ X+, x− ∈ X−, and x0 ∈ X0.

We summarize the properties of the functions defined by (2.26)-(2.27) in the following

proposition.

Proposition 4.1 Let x+ ∈ X+, x− ∈ X−, and x0 ∈ X0. The functions w̃x+x− : Qn → R,

and w̃x0 : Qn → R defined by (2.26) and (2.27) are non-negative, continuous on Qn, and

positive on Qn
+. Moreover, for any w ∈ Qn the functions satisfy (2.24) and (2.25).

Let us derive the form of the barycentric transformation for any size- and cost-

constrained design w ∈ Qn
+. The diagonal element of the update matrix (2.23) corre-

33

sponding to y+ ∈ X+ is

(D(w))y+y+ =
∑

x+∈X+

∑
x−∈X−

w̃x+x−(w)(q(x+,x−)
y+

)2 +
∑
x0∈X0

w̃x0(w)(q(x0)
y+

)2

=
wy+
sδ(w)

∑
x−∈X−

wx−δ
2
x−

δy+ + δx−
. (2.28)

An analogous formula is valid for y− ∈ X−. For y+ ∈ X+ and y− ∈ X− the element

(y+, y−) of the update matrix is

(D(w))y+y− =
∑

x+∈X+

∑
x−∈X−

w̃x+x−(w)q(x+,x−)
y+

q(x+,x−)
y− +

∑
x0∈X0

w̃x0(w)q(x0)
y+

q(x0)
y−

=
wy+wy−
sδ(w)

δy+δy−
δy+ + δy−

. (2.29)

For y0 ∈ X0, the diagonal element of the update matrix corresponding to y0 is

(D(w))y0y0 =
∑

x+∈X+

∑
x−∈X−

w̃x+x−(w)(q(x+,x−)
y0

)2 +
∑
x0∈X0

w̃x0(w)(q(x0)
y0

)2

= wy0 . (2.30)

It can be easily checked that all other elements of the update matrix are equal to

zero. Equalities (2.28)-(2.30) yield the following form of the barycentric updating rule for

w ∈ Qn
+:

TB(w) = w � dπ(w), (2.31)

where � is the componentwise multiplication and the components of dπ(w) are given by

dπx+(w) =

∑
x−∈X− wx−δx− d̃x+x−(w)

msδ(w)
; x+ ∈ X+, (2.32)

dπx−(w) =

∑
x+∈X+

wx+δx+ d̃x+x−(w)

msδ(w)
; x− ∈ X−, (2.33)

dπx0(w) =
dx0(w)

m
; x0 ∈ X0. (2.34)

Note that the barycentric transformation uses the numbers d̃x+x−(w), x+ ∈ X+, x− ∈

X− and dx0(w), x0 ∈ X0, which can be directly re-used for computing the lower bound on

the design efficiency and for the deletion rules given in Theorem 3.2.

For computations, it may be useful to rewrite the barycentric transformations (2.32)-

(2.34) to the following form. For vectors a ∈ Rn+ and b ∈ Rn− let a⊕b> be the n+×n−
matrix with components ax+ + bx− . This operation can be implemented as a stand-alone

34

function or using the Kronecker multiplication. For any vector g ∈ Rn, let g+ ∈ Rn+ ,

g− ∈ Rn− , and g0 ∈ Rn0 denote the sub-vectors of g corresponding to x+ ∈ X+, x− ∈ X−,

and x0 ∈ X0, respectively. Let w ∈ Qn be a permissible design and let δ = (δ1, ..., δn)>.

The n+ × n− matrix ∆ with components defined in (2.21) is

∆ =
[
(d+(w)� δ+)⊕ (d−(w)� δ−)>

]
�
[
(1n+ � δ+)⊕ (1n− � δ−)>

]
,

where � denotes the componentwise division. Then, the barycentric transformation (2.31)

can be written in the form

TB
+(w) =

1

msδ(w)
w+ � [∆(w− � δ−)], (2.35)

TB
−(w) =

1

msδ(w)
w− � [∆>(w+ � δ+)], (2.36)

TB
0 (w) =

1

m
w0 � d0(w). (2.37)

In matrix-based software such as Matlab or R, computations (2.35)-(2.37) can be

performed very efficiently. Nevertheless, for larger problems, the explicit evaluation of

the matrix ∆ might be too memory-consuming. In such cases, it is possible to compute

the multipliers (2.32)-(2.34) individually.

Let w(0) ∈ Qn
+ be an initial design and let w(t+1) = TB(w(t)) for t = 0, 1, 2, It is

evident that the designs w(t) have all components positive and the matrices M(w(t)) are

non-singular. Recall that the general theory in [31] (described in Subsection 1.3) implies

that the sequence {M(w(t))}∞t=0 converges to some non-singular matrix M∞, but it does

not guarantee that M∞ is the optimal information matrix. However, it is possible to show

that under a mild technical condition the designs w(t) do converge to the optimum in the

sense that their criterial values φD(w(t)) converge to the optimal value of (2.16):

Theorem 4.2 Let w(0) ∈ Qn
+ and let w(t+1) = TB(w(t)) for t = 0, 1, 2, Let lim inft→∞

sδ(w(t)) > 0. Then, limt→∞ φD(w(t)) = φD(w∗), where w∗ is any solution of (2.16).

The technical condition lim inft→∞ s
δ(w(t)) > 0 is automatically satisfied once X0 = ∅.

The case X0 6= ∅ takes place only if cx is exactly equal to one for some x ∈ X , which is

likely to occur only seldom in real applications. Moreover, even if this is the case, i.e.,

if X0 6= ∅, it is possible to adopt a conservative practical approach by slightly increasing

the costs cx0 , x0 ∈ X0. Alternatively, one can use the following lemma.

35

Lemma 4.3 Let w(0) ∈ Qn
+ and let w(t+1) = TB(w(t)) for t = 0, 1, 2, Let v0 =

max{φD(w) : w ≥ 0n,
∑

x0∈X0
wx0 = 1}, that is, v0 is the optimal value of the standard

problem of approximate D-optimality on X0. Assume that φD(w(s)) > v0 for some s ∈

{0, 1, 2, ...}. Then, lim inft→∞ s
δ(w(t)) > 0.

In most cases, the value v0 from Lemma 4.3 is so small, that φD(w(s)) > v0 is satisfied

already for the initial design w(0). In such cases, the convergence of the barycentric

algorithm is guaranteed from the outset.

The previous results establish the monotonic convergence of the “pure” barycentric

algorithm, i.e., without the application of the deletion rules from Theorem 3.2. If we do

remove the redundant design points during the computation, the actual reduction of the

size of the design space can take place only a finite number of times (since X is finite).

Then, the convergence results can be applied to the design space of the final size.

5 Numerical study

Assume the full quadratic linear regression model with homoscedastic uncorrelated ob-

servations on a 101× 101 equidistant rectangular grid in the square [0, 1]× [0, 1]. For this

model, the observations y satisfy

E(y) = β1 + β2r1(x) + β3r2(x) + β4r
2
1(x) + β5r

2
2(x) + β6r1(x)r2(x), (2.38)

where r1(x) and r2(x) transform the index x ∈ X = {1, 2, ..., 1012} into two coordinates

in [0, 1] by formulas r1(x) = b(x− 1)/101c/100, and r2(x) = ((x− 1) mod 101)/100. That

is, the model has m = 6 unknown parameters β1, . . . , β6 and the regressors are given by

f(x) = (1, r1(x), r2(x), r2
1(x), r2

2(x), r1(x)r2(x))>.

The costs were chosen to be cx = 0.1 + 6r1(x) + r2(x) for all x ∈ X . Thus, the sizes of the

partitions X+, X−, and X0 are n+ = 9465, n− = 720, and n0 = 16, respectively. Every 16

iterations, we used Theorem 3.2, parts (i)-(iii), to remove redundant design points.

Figures 2.3a, 2.3b, and 2.3c illustrate the designs and the areas of removed design

points at the moments when the algorithm reached the lower bounds of efficiencies 0.99,

0.999 and 0.9999, as given by Theorem 3.2. Figure 2.3d shows the time-dependence of

36

the iteration number and the number of non-removed design points. Note that as the size

of the design space shrinks, the speed of the computation (measured by the number of

iterations) increases. The resulting D-optimal size- and cost-constrained design resembles

the standard approximate D-optimal design, with some support points shifted towards

the low-cost regions and with attenuated weights corresponding to more expensive trials.

To obtain more general numerical results, we generated random instances of the prob-

lem (2.16) with the aim to give statistical information about the speed of computation of

the S&C algorithm. Clearly, the execution time can be strongly influenced by the software

and the hardware used (we used the Matlab computing environment on 64 bit Windows 7

system running an Intel Core i3-4000M CPU processor at 2, 40 GHz with 4 GB of RAM).

Therefore, we also exhibit results about the numbers of iterations, which depend only on

the computational method itself.

More specifically, we run the S&C algorithm 1000 times for various combinations

of parameters p0 = n0/n, p+− = n+/n− and l, where l is the number of iterations

between successive applications of the deletion method based on Theorem 3.2, parts (i)-

(iii). In each simulation, we varied one of the parameters p0 ∈ {0, 0.25, 0.5, 0.75, 1},

p+− ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, or l ∈ {1, 4, 16, 64,∞}, keeping all other parameters fixed

(the value l =∞ means that the removal of redundant design points was not performed

at all). The size of the design space and the number of model parameters were always

the same: n = 600 and m = 4.

For each couple p0, p+−, we generated n+ = b(1− p0)p+−nc costs independently from

the shifted exponential distribution Exp(1) + 1, and n− = b(1 − p0)(1 − p+−)nc costs

independently from the uniform distribution on (0, 1). Remaining n − n+ − n− ≈ np0

costs were set to 1. Regressors f(x) ∈ Rm, x ∈ X , were sampled independently from

Nm(0m, Im).

The S&C algorithm started its iterative computation from the initial design w(0)

defined by (2.17)-(2.19). In every step, the current design was updated according to

(2.31)-(2.34).

After each successful application of the deletion method, we had to “re-normalize”

37

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) effD ≥ 0.99

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) effD ≥ 0.999

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) effD ≥ 0.9999

0 200 400 600 800 1000

0
20

00
40

00
60

00
80

00
10

00
0

time

ite
ra

tio
n

/ d
es

ig
n

sp
ac

e
si

ze

0.99 0.999 0.9999

(d)

Figure 2.3: Figures 2.3a, 2.3b, and 2.3c visualize the designs constructed using the

barycentric algorithm for the quadratic regression model (2.38). The weights are de-

noted by black dots with areas proportional to their numeric values. The gray regions

denote the points of the original design space that were removed by the deletion rules

from Theorem 3.2. Figure 2.3d shows the iteration number (dashed line) and the number

of residual design points (solid line) as they depend on time in seconds. The vertical

lines (dotted) denote the time moments when the efficiencies 0.99, 0.999 and 0.9999 were

achieved, which corresponds to Figures 2.3a, 2.3b, and 2.3c, respectively.

38

the design to satisfy the constraints of (2.16). A natural re-normalization is to set wx+ =

h+wx+ for all x+ ∈ X+, wx− = h−wx− for all x− ∈ X−, and wx0 = h0wx0 for all x0 ∈ X0,

where h+, h− and h0 are suitably chosen positive constants.

Let w ≥ 0n be a fixed design with 0 < s =
∑

xwx ≤ 1 and 0 <
∑

x cxwx ≤ 1.

Let s+ =
∑

x+
wx+ , s− =

∑
x−
wx− , and s0 =

∑
x0
wx0 . Let sδ+ =

∑
x+
δx+wx+ , and let

sδ− =
∑

x−
δx−wx− .

Assume that s+, s− > 0, which implies sδ+, s
δ
− > 0. For the requirement that the

re-normalized design should satisfy both (2.11) and (2.12), the following linear equalities

must hold

h+s+ + h−s− + h0s0 = 1, (2.39)

h+(s+ + sδ+) + h−(s− − sδ−) + h0s0 = 1. (2.40)

If s0 = 0, then (2.39) and (2.40) give h+ = sδ−/(s+s
δ
−+ s−s

δ
+), h− = sδ+/(s+s

δ
−+ s−s

δ
+)

and h0 can be arbitrary. If s0 > 0, equalities (2.39) and (2.40) do not uniquely determine

any of the re-normalization factors h+, h−, h0. Therefore, motivated by keeping the ratio

of the weights of X+ ∪X− and X0 the same before and after the re-normalization, we can

demand equality
s+ + s−
s0

=
h+s+ + h−s−

h0s0

, (2.41)

which is linear in h+, h−, h0. The solution of the linear system (2.39)-(2.41) is

h+ =
sδ−(s+ + s−)

s(s+sδ− + s−sδ+)
, h− =

sδ+(s+ + s−)

s(s+sδ− + s−sδ+)
, h0 =

1

s
.

If s+ = s− = sδ+ = sδ− = 0, we have s0 > 0, which means that we can simply set

h0 = 1/s0, and h+, h− can be arbitrary. In this case, the S&C algorithm is reduced to the

standard multiplicative algorithm without the cost constraint.

The required minimal efficiency was set to 0.99999, which means that we stopped the

algorithm once this lower bound was reached by the actual design (cf. Theorem 3.2). We

remark that the algorithm converged in all 15000 simulated problems.

The results in the form of box-plots are exhibited in Figures 2.4 and 2.5. The results

indicate that the problem is computationally more demanding for greater values of ñ =

n0 + n+n−. Thus, with fixed n = n0 + n+ + n−, we can generally expect a longer

39

computation time (and, to a lesser extent, a greater number of iterations) for n0 = 0

and n+ ≈ n−. The numerical results also demonstrate that removal of redundant design

points can decrease the computation time by an order of magnitude.

p0

lo
g(

tim
e)

−
1.

5
−

0.
5

0
0.

5
1

1.
5

0 0.25 0.5 0.75 1

(a)

p+−

lo
g(

tim
e)

−
1.

5
−

0.
5

0
0.

5
1

1.
5

0.1 0.3 0.5 0.7 0.9

(b)

l

lo
g(

tim
e)

−
1.

5
−

0.
5

0
0.

5
1

1.
5

1 4 16 64 ∞

(c)

Figure 2.4: The decimal logarithm of the computation time (in seconds) of the S&C

algorithm necessary to achieve the efficiency of 0.99999. Each boxplot is based on 1000

randomly generated problems of the type (2.16) with n = 600 and m = 4. Figure 2.4a:

p+− = 0.5, l = 16, and p0 varies in {0, 0.25, 0.5, 0.75, 1}. Figure 2.4b: p0 = 0.5, l = 16,

and p+− varies in {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 2.4c: p0 = 0.5, p+− = 0.5, l varies in

{1, 4, 16, 64,∞}. The value l = ∞ means that no removals of redundant design points

were performed. See the main text for more details.

The Matlab code that implements the S&C algorithm with the deletion method is

available at: www.iam.fmph.uniba.sk/design/ .

Finally, we compared the S&C algorithm (without and also with the application of

the deletion rules) to two natural competitors: the vertex-direction (VD) algorithm, and

the semidefinite programming (SDP) algorithm implemented by the SeDuMi solver for

Matlab. Each algorithm was tested on 100 problems randomly generated with n = 600,

m = 4, p0 = 0.5 and p+− = 0.5. The S&C algorithm and the VD algorithm were

terminated once the efficiency bound from Theorem 3.2 guaranteed the efficiency of at

least 0.99999. The stopping rule of the SDP algorithm was defined by the standard

settings except for the parameter sedumi.eps which was set to 10−5.

As shown in Figure 2.6, the S&C algorithm with removal of redundant design points

is approximately twice as fast as the SDP algorithm, one order of magnitude faster than

40

p0

ite
ra

tio
ns

0
10

00
20

00
30

00
40

00

0 0.25 0.5 0.75 1

(a)

p+−

ite
ra

tio
ns

0
10

00
20

00
30

00
40

00

0.1 0.3 0.5 0.7 0.9

(b)

l

ite
ra

tio
ns

0
10

00
20

00
30

00
40

00

1 4 16 64 ∞

(c)

Figure 2.5: The number of iterations of the S&C algorithm necessary to achieve the

efficiency of 0.99999. Each boxplot is based on 1000 randomly generated problems of

the type (2.16) with n = 600 and m = 4. Figure 2.5a: p+− = 0.5, l = 16, and

p0 varies in {0, 0.25, 0.5, 0.75, 1}. Figure 2.5b: p0 = 0.5, l = 16, and p+− varies in

{0.1, 0.3, 0.5, 0.7, 0.9}. Figure 2.5c: p0 = 0.5, p+− = 0.5, l varies in {1, 4, 16, 64,∞}. The

value l =∞ means that no removals of redundant design points were performed. See the

main text for more details.

the pure S&C algorithm, and about three orders of magnitude faster than the VD algo-

rithm. The S&C algorithms produced the most efficient designs and the VD algorithm

produced the least efficient designs. Note that the advantage of the SDP method is that

the computation time is very stable. However, using the SDP solver, we were able to solve

the problems (2.13) and (2.16) only for dimensions smaller than n = 4000. On the other

hand, the barycentric and the VD algorithms can be also used for much larger problems.

6 Miscellaneaous remarks

6.1 A pair of general positive linear constraints

The theoretical results of this chapter and the S&C algorithm can be used for a general

pair of positive linear constraints, with many practical interpretations besides the limit

on the size and on the cost of the experiment. Indeed, consider the D-optimal design

41

time (s)

ef
fic

ie
nc

y

0.1 1 10 100 1000

1
−

10
−5

1
−

10
−7

1
−

10
−9

1
−

10
−1

1
BC−16

BC−Inf

SDP

VD

Figure 2.6: A comparison of selected algorithms for computing approximate

D-optimal size- and cost-constrained designs. Each symbol represents the com-

putation time (in seconds) and the achieved efficiency relative to the optimum for

one of the competing algorithms applied to a randomly generated problem. Black

circles, dark gray squares, light gray diamonds and white triangles represent the

results of the S&C algorithm with the application of the deletion rules (l = 16),

the S&C algorithm without the application of the deletion rules (l = ∞), the

SDP algorithm, and the VD algorithm, in the respective order. Each algorithm

was tested on 100 randomly generated problems. See the text for details.

problem

w̃∗ ∈ arg max
w̃
{φD(w̃) : w̃ ≥ 0n,

∑
x

c(1)
x w̃x ≤ 1,

∑
x

c(2)
x w̃x ≤ 1}, (2.42)

where c
(1)
x , c

(2)
x > 0, for all x ∈ X , are given constants. Let f̃(x), x ∈ X , denote the

regressors. It turns out that the problem (2.42) can be transformed to (2.13) in an

42

analogous way as the single-cost constrained problem (2.15) can be transformed to the

standard problem (2.14). Specifically, it is possible to use transformations wx = c
(1)
x w̃x,

cx = c
(2)
x /c

(1)
x , and f(x) = f̃(x)/

√
c

(1)
x for all x ∈ X . Similarly, the problem (2.42) with the

inequality constraints replaced with equality constraints can be transformed to (2.16).

6.2 Cost minimization with a prescribed information matrix

A related problem is to find the minimum-cost design in the class of all designs with a

prescribed information matrix M∗ (note that the class of such designs can be infinite),

see, e.g., [63]. For the finite design space X , this leads to the linear programming problem

w∗ ∈ arg min
w
{
∑
x

cxwx : w ≥ 0n,
∑
x∈X

wxf(x)f>(x) = M∗}.

Hence, once we identify an approximate D-optimal size- and cost-constrained design, it

is reasonable to solve the above-mentioned linear programming problem, which might

provide an alternative optimal design with a strictly lower cost.

6.3 Relations to stratified D-optimality

Let cx+ ≡ c+ > 1 for all x+ ∈ X+, cx− ≡ c− ∈ (0, 1) for all x− ∈ X− and let X0 = ∅.

Define s+(w) =
∑

x+
wx+ and s−(w) =

∑
x−
wx− . If w is permissible for (2.16), then

s+(w) + s−(w) = 1 and c+s+(w) + c−s−(w) = 1. Hence the values

s+ = s+(w) =
δ−

δ+ + δ−
, s− = s−(w) =

δ+

δ+ + δ−

do not depend on w. Therefore, the set Qn of designs satisfying (2.11)-(2.12) is the same

as the set of stratified designs with partitions X+, X− and weights s+, s−; see [31]. In

other words, in this situation the size- and cost-constrained D-optimality coincides with

the stratified D-optimality. We show that for this particular case, the results described

in this chapter are the same as the results from [31], including the equivalence theorem,

the “deletion rules” and the S&C algorithm.

We now provide the equivalence theorem for stratified D-optimality, as stated in [31],

simplified for two partitions, and show its coincidence with Theorem (3.1).

Theorem 6.1 Let w ∈ Qn
r . Then the following statements are equivalent.

(i) The design w is D-optimal in Qn.

43

(ii) There exists g+, g− ∈ R such that s+g+ +s−g− = 0, dx+(w) ≤ m+g+ for all x+ ∈ X+

and dx−(w) ≤ m+ g− for all x− ∈ X−.

(iii) s+ maxx+∈X+ dx+(w) + s−maxx−∈X− dx−(w) ≤ m.

Equivalence between (ii) in Theorem (6.1) and (ii) in Theorem (3.1) can be easily

verified by setting h = g+/δ+ = −g−/δ− and using the fact that s+ = δ−/(δ+ + δ−) and

s− = δ+/(δ+ + δ−). Similarly, equivalence between (iii) in Theorem (6.1) and (iii) in

Theorem (3.1) can be verified.

Extreme points of the set of permissible designs can be written in the form

qx+x− =
δ−

δ+ + δ−
ex+ +

δ+

δ+ + δ−
ex− = s+ex+ + s−ex− ; x+ ∈ X+, x− ∈ X−.

Both efficiency bound and deleting rule from Theorem 3.2 are based on ε:

ε = max
x+∈X+,x−∈X−

d̃x+x−(w)−m = max
x+∈X+,x−∈X−

δ+dx−(w) + δ−dx+(w)

δ+ + δ−
−m

=
δ−

δ+ + δ−
max
x+∈X+

dx+(w) +
δ+

δ+ + δ−
max
x−∈X−

dx−(w)−m

= s+ max
x+∈X+

dx+(w) + s− max
x−∈X−

dx−(w)−m,

which suggests that efficiency bounds and deleting rules are the same from both points

of view.

Let w ∈ Qn. Then using sδ(w) ≡ δ+s+ = δ−s− = δ+δ−/(δ+ + δ−), we can define the

barycentric coordinates of w for every x+ ∈ X+, x− ∈ X− by

(w̃(w))x+x− =
(δ+ + δ−)wx+wx−

sδ(w)
=

(δ+ + δ−)2wx+wx−
δ+δ−

=
wx+
δ−

δ++δ−

wx−
δ+

δ++δ−

=
wx+
s+

wx−
s−

.

Obviously, coincidence of barycentric coordinates w̃(w)x+x− and extreme points qx+x−

results in the coincidence of the barycentric updating rules.

6.4 A re-normalization method

For computing D-optimal stratified designs, there exists a fast re-normalization heuristic,

and extensive numerical computations suggest that it always converges to the optimum.

However, to our best knowledge, there is no analogous re-normalization heuristic for the

general size- and cost-constrained problem (2.16). For instance, an obvious suggestion

would be using an alternate application of the standard multiplicative algorithm (which

44

could transform a design from Qn
+ outside of Qn

+), and the re-normalization described

in Section 5 (which transforms any positive design back to Qn
+). Numerical experiments

suggest that this method fails to produce a convergent sequence of designs.

6.5 The middle role of the S&C algorithm

It is worth noting that in Section 5 of [70], multiplicative algorithms were viewed to have

a “middle” role, a sequel to a vertex-direction algorithm to be used when most non-

optimal design points had been eliminated and a precursor to more powerful methods

when convergence of the multiplicative algorithm becomes weak. However, the deletion of

redundant points reduces the problem of the slow final convergence of the S&C algorithm,

cf. Fig. 2.6.

45

Chapter III

Privacy sets

Parts of the results of this chapter (Section 2 and Section 3) were already published in [6]

and [50].

In a majority of real-life problems, the number of the measurements is limited by

some prescribed number N ∈ N. For a finite design space X , such an exact design can be

represented by a vector of weights as in II. However, we drop the assumption of finiteness

of X in this chapter and permit all design spaces that are compact (in Rd). Instead of a

vector of weights, we define a design ξ as a finite subset of X :

ξ ⊆ X , |ξ| = N. (3.1)

Definition 3.1 implies that no replicated observations in the same design points are allowed,

which is a natural restriction for designs considered in this chapter (see the beginning of

Section 1.1). Note that the concept of a subset of size N enables us to include also design

spaces that are finite, but large-scale, and operating with such enormous vectors of design

weights would be computationally infeasible.

1 Preliminaries

Similarly to the previous chapter, we focus on the designs limited by some linear con-

straints. For exact replication-free designs defined by (3.1), l general linear restrictions

can be written as
1

N

∑
x∈ξ

axj ≤ bj j = 1, . . . , l, (3.2)

46

where axj and bj are constants. Some of the common linear restrictions are listed in Section

1.1 of Chapter II. They are formulated in terms of the experimental design defined as a

vector of weights (see (2.1)), but can be easily expressed in accordance with the replication-

free definition of a design (3.1). Also note that excluding replications itself yields for a

finite design space finite number of linear constraints on the design (as described in Section

1.1 of Chapter II).

Analogously to (2.3), let us now define the standardized information matrix of a design

ξ for a given regression function f : X → Rm and a given number of trials N :

M(ξ) =
1

N

∑
x∈ξ

f(x)f(x)>. (3.3)

The problem of finding an optimal linearly constrained experimental design is to max-

imize criterion φ in the set of all permissible designs Γ, that is, to find

ξ∗ ∈ arg max
ξ∈Γ

φ(ξ),

where Γ ⊆ Ξ and Ξ denotes the set of all designs.

In optimal design of experiments, the target function φ is typically a function of the

information matrix of ξ, that is, φ(ξ) = φ(M(ξ)). For instance, the standardized D-

optimality can be for exact designs defined as

φD(ξ) = det1/m (M(ξ)) , ξ ∈ Γ. (3.4)

However, this is not typical in case of so-called space-filling designs: Below, we explain

how these two areas of experimental design differ and present an idea of how to “bind”

them together by the notion of privacy sets.

1.1 Space-filling designs

In computer simulation experiments, one usually runs a deterministic code rather than

performs the real (stochastic) data generating process. This implies that replicating mea-

surements in the same design point becomes irrelevant and the universal recipe is to

spread out the measurements “as uniformly as possible” across the design space, yielding

so-called space-filling designs. This approach justifies the use of definition 3.1 for designs

considered in this chapter.

47

1.1.1 “Soft” space-filling methods

The classic approach of the space-filling methods is to focus on the target function φ to

be optimized, so that the corresponding optimal design would have the desired space-

filling properties. That is, φ does not measure the amount of the information via the

information matrix and the corresponding regression model, but says how well the points

are distributed in the design space, see [59].

Among these criteria, two are the most fundamental (see [38]): Maximin criterion

φMm(ξ) = min
x,y∈ξ,x 6=y

ρ(x, y),

which, when maximized, makes the smallest distance between neighbouring points in ξ

as large as possible. Alternatively, minimizing minimax criterion

φmM(ξ) = max
y∈X

min
x∈ξ

ρ(x, y)

makes the maximum distance from all the points in X to their closest design point in ξ as

small as possible. Examples of these designs for N = 7 points are illustrated in Fig.3.1.

(a) Maximin optimal design (b) Minimax optimal design

Figure 3.1: Maximin and minimax distance designs for N = 7 points in [0, 1]2. The circles

have radius φMm(ξ)/2 in 3.1a and radius φmM(ξ) in 3.1b. Source: [59].

It is usual in computer experiments that only a few factors turn out to be “active”.

That is, it may be desirable for the design to be space-filling in lower dimensional projec-

tions as well. We call such designs “non-collapsing”. In [21] the average reciprocal distance

(ARD) criterion was proposed, modified such that the optimal design has good projection

properties onto a given set of subspaces of the design space. Let J ⊂ {1, 2, . . . , d} be a

nonempty index set of dimensions of subspaces we would like to consider and let Xj denote

the set of all
(
d
j

)
standard coordinate subspaces of dimension j for every j ∈ J .

48

The idea of ARD criterion is that the average reciprocal pairwise distance between

design points should be minimized. Hence, we use the following formulation of ARD:

φARD(ξ) =


1(

N
2

)∑
j∈J
(
d
j

)∑
j∈J

∑
Y∈Xj

∑
x,y∈ξ
x 6=y

(
j1/z

ρz(x∗Y , y
∗
Y)

)λ
1/λ

, (3.5)

where z ≥ 1 and λ ≥ 1 are given constants, x∗Y is the projection of x ∈ X onto subspace

Y , and ρz is for any couple x = (x1, . . . , xd)
>, y = (y1, . . . , yd)

> defined by ρz(x, y) =(∑d
i=1 |xi − yi|z

)1/z

.

Since the active factors are not known in advance, it may be convenient to ensure

good space-filling properties in all subspaces of the factors. This issue is dealt with in

[40], where the following maximum projection (MaxPro) criterion is minimized:

φMaxPro(ξ) =


∑
x,y∈ξ
x 6=y

1

Πd
i=1ρ

2(x∗i , y
∗
i)


1/d

,

where x∗i denotes projection of x ∈ X onto the i-th subspace.

These geometric criteria do not necessarily have to be model-free: They are sometimes

combined with an estimation or prediction oriented criterion (like suggested in [49]). We

will call all these methods focused on proposing criterion φ “soft” space-filling methods.

1.1.2 “Hard” space-filling methods

Non-collapsingness of designs does not have to be ensured only by the appropriate opti-

mization criterion. The search for designs can be, for example, restricted to the class of

Latin hypercube designs (LHDs) introduced in [45]: Let X = [0, 1]d be the design space.

Any Latin hypercube design ξ distributes design points within the discrete regular grid

of n = Nd points, with levels 0, 1/(N − 1), . . . , 1 for every dimension, such that for all

x, y ∈ ξ it holds that

xi 6= yi for all i = 1, . . . , d.

Clearly, these designs have the property that any of their one-dimensional projections is

spread out optimally with respect to the Maximin criterion. Paper [49] suggests to search

49

for the optimal Maximin design within the class of Latin hypercube designs, minimizing

the criterion

φMmLHD(ξ) =


∑
x,y∈ξ
x 6=y

1

ρk(x, y)


1/k

,

where k > 0 is chosen large enough to achieve maximin distance.

LHDs are widely used in many forms and variations. They represent some restrictions

posed on the design, ensuring good projection properties. It may be for example rea-

sonable to search for a D-optimal design among LHDs. Moreover, new restrictions may

extend the idea of LHDs. For instance, Bridge designs (BDs) introduced in [39] aim to

“bridge” the gap between D-optimal designs restricted only by the experimental size and

D-optimal LHDs: Let X = [0, 1]d. Any two points x, y, x 6= y, of a Bridge design ξ must

satisfy

|xi − yi| > δ for all i = 1, . . . , d,

where δ is a given positive constant. These designs have the property that projections

onto any coordinate axis will space the points no closer than some specified distance δ,

which may be viewed as a tuning parameter.

Another natural requirement could be to make sure that design points are sufficiently

far away from each other. This would for all x, y ∈ ξ, x 6= y mean that

ρ(x, y) > δ,

where δ is a given positive constant. These designs will be called Minimum-distance

designs (MDDs). In contrast to LHDs and BDs, Minimum-distance designs space design

points in X directly rather than focusing on the one-dimensional design projections. We

deal with these restrictions in Section (4).

This approach (LHDs, BDs, MDDs) is different from the “soft” methods described

above; the space-filling properties are not a result of a suitable geometric criterion, but

are enforced strictly by the design constraints that must hold. These “hard” space-filling

methods then allow for a secondary criterion to be used for optimization (e.g., D- or

A-optimality). In Section 2, we introduce the central notion of privacy sets for dealing

with the “hard” methods. This notion provides a unifying framework for LHDs, BDs and

50

MDDs, among many others. In fact, we think that our concept of privacy sets represents

a much more fundamental “bridge” between the two important ways of designing an

experiment (in comparison to Bridge designs dealing with one specific type of constraints

only). This can be schematically depicted as follows:

PRIVACY SETS︷ ︸︸ ︷
OPTIMAL DESIGNS SPACE-FILLING DESIGNS

(do not distribute points across X) (do not consider regression model)

2 Privacy sets

Let us start with the definition of the central notion for our approach to the generation

of (constrained) space-filling designs.

Definition 2.1 For each x ∈ X , let P(x) ⊆ X , x ∈ P(x), be a given privacy set of the

point x. For any design ξ ∈ Ξ, let P(ξ) = ∪x∈ξP(x) be the privacy set of the design ξ.

We assume that there is a given upper limit on the size of the experiment N ∈ N. A

design ξ will then be called permissible, if

|ξ| ≤ N,

x /∈ P(y) for all x, y ∈ ξ, x 6= y.

A permissible design ξ will be called maximal permissible if it cannot be augmented

without violation of some of the constraints, i.e., if ξ ∪ {x} is not permissible for all

x ∈ X \ {ξ}.

Assumption 2.1 We assume that |ξ| = N for any maximal permissible design.

Note that Assumption 2.1 guarantees that any optimal design is of size N , which is in

accordance with definition (3.1). We just allow designs of sizes smaller than N to be

called permissible, too, in order to explain our algorithm and our results more clearly.

We would like to emphasize that the idea of privacy sets is not artificial, but can be

used for example to ensure various space-filling properties. In fact, many of the widely-

used designs can be formulated in the terms of privacy sets. We list here some of the

most common examples, some of them defined in Section 1.1.2, the others defined as

approximate designs on finite X in Section 1.1 of Chapter II.

51

1. Latin hypercube designs introduced in [45]. The design space X is a d-dimensional

square grid. The size of the design space is n = Nd. For any x ∈ X , the privacy set

P(x) is given by

P(x) = {y : ∃i ∈ {1, . . . , d} : xi = yi}.

2. Bridge designs introduced in [39]. The design space X is a d-dimensional square

grid with n = Ld for some L ∈ N. For any x ∈ X , the privacy set P(x) is given by

P(x) = {y : ∃i ∈ {1, . . . , d} : |xi − yi| ≤ δ}, (3.6)

where δ is a given positive constant. Bridge designs represent a generalization of

Latin hypercube designs.

3. Replication-free designs (cf. for example [11]): For any x ∈ X , the privacy set P(x)

is given by

P(x) = {x},

which means that there is no other constraint except for at most one trial in each

design point. For our design definition (3.1), this condition is automatically satisfied.

4. Minimum-distance designs (discussed in detail in Section 4): For any x ∈ X , the

privacy set P(x) is given by

P(x) = {y : ρ(x, y) ≤ δ}, (3.7)

where δ is a given positive constant and ρ(., .) is the Euclidean metric. The metric in

(3.7) can be replaced by any other metric, which would result in different “shapes”

of privacy sets.

5. Stratified designs introduced in [31] (as a generalization of marginally restricted

designs): Let X1, . . . ,Xk be a decomposition of X into nonempty non-overlapping

partitions (strata). Let Xj ∩ ξ ≤ 1 for j = 1, . . . , k. This setting represents a special

case of stratified designs, where at most one trial in every partition is allowed. For

x ∈ Xj, the privacy set P(x) is then given by

P(x) = Xj.

52

(a) LHD (b) BD (c) RFD (d) MDD

Figure 3.2: Examples of different privacy sets, namely a Latin hypercube design (LHD),

a Bridge design (BD), a replication-free design (RFD) and a Minimum-distance design

(MDD) displayed in figures 3.2a, 3.2b, 3.2c, 3.2d, respectively. The blue area denotes the

privacy set of the red point x.

Figure 3.2 illustrates four different examples of various privacy sets. For simplicity,

the design space is in all four cases a two-dimensional square grid.

Figure 3.3 shows an example of privacy sets of a stratified design with k = 3 partitions.

Privacy sets of the points in the same partition are identical.

Figure 3.3: An illustration of the privacy sets of a stratified design with 3 partitions. All

the points in the “blue” partition have the same privacy set P(x); the same holds for the

points in the “red” partition and the points in the “green” partition.

Note that the use of privacy sets is meaningful not only for computer experiments, but

also for the physical ones. They cover, for example, time-separation constraints, where

the designs space represents time, and consecutive trials must be performed at least δ

time units apart (see, e.g., the second example of Section 5 in paper [65]). In this case,

X = R+
0 and P(x) = (x− δ, x+ δ) ∩ X for all x ∈ X .

53

The set P(x) is typically some neighbourhood of x (containing also x itself) securing

point x some “privacy”, although this is not strictly required by the definition itself. Using

the privacy sets defined above we obtain the optimization problem

ξ∗ ∈ arg max
ξ∈Ξ

{φ(ξ); |ξ| ≤ N and x /∈ P(y) for all x, y ∈ ξ, x 6= y}. (3.8)

In above, we automatically assumed restrictions enforced by privacy sets to belong to

the class of the linear constraints (3.2). Let us now explicitly explore the relation. Let

P(x) be the privacy set of x ∈ X . For all y ∈ P(x) it must hold that |ξ ∩{x, y}| ≤ 1. Let

us now say x ∼ y (x and y are “in a relation”), iff x ∈ P(y) or y ∈ P(x).

Obviously, it is advantageous to reduce the amount of the linear restrictions to the

minimum (by preserving their original meaning). This is necessary for example when

implementing an algorithm that requires the linear constraints as the input data. For

privacy sets, this can be done by forming partitions Xj ⊂ X , such that for all x, y ∈ Xj
it holds that x ∼ y and at the same time the size of Xj is the maximal possible (that is,

any augmentation of Xj would violate the condition x ∼ y for all x, y ∈ Xj).

We now have a set of (in general) overlapping partitions, such that |ξ ∩ Xj| ≤ 1 and

∪jXj = X . This can be considered a generalization of the idea of a stratified design

(see point 5 of the examples listed in above). Note that if, except for the symmetry, the

relation “∼” possessed also the property of the transitivity, the partitions Xj would not

overlap and we would deal exactly with a stratified design as defined in [31].

2.1 Privacy Sets Algorithm

In the following, we present a framework for an exchange-type algorithm - Privacy Sets

Algorithm (PSA) - for solving optimization problem (3.8). In general, the specification of

the individual steps depends greatly on the design space X and on the constraints given

by the sets P(x), x ∈ X , as well as on the optimization criterion φ.

A characteristic feature of PSA is the ability to temporarily violate “privacy” of one or

more design points. This offers a wider range of possibilities than when performing only

permissible changes and prevents the algorithm from getting stuck, for instance when

the privacy constraints are very strict. Let A(ξ) ⊆ X \ ξ denote a set of “candidate

54

points” that can possibly augment a maximal design ξ. The set A(ξ), in contrast to

P(ξ), is not an attribute of the problem itself, but can be adjusted in order to ensure

the optimum performance of the algorithm. Note that we do not require A(ξ) to contain

solely permissible points x /∈ P(ξ).

One of the key parts of PSA is the efficient augmentation of a design that is not

maximal with the remaining runs to achieve the full size N . This is done by employing

the following forward-type procedure (Algorithm 1) which adds permissible design points

one-by-one until a maximal design is obtained.

Algorithm 1: Greedy Procedure (GrP)

Input : A permissible design ξ, |ξ| = N∗ < N .

Output: A permissible design ξ, |ξ| = N .

1 for i = 1 : N −N∗ do

2 Augment ξ with the point x, which maximizes φ(ξ ∪ {x}) subject to

x /∈ P(ξ).

3 end

4 return ξ

One-point permissible augmentation from Step 2 can be crucial in implementing the

PSA algorithm effectively. One of the straightforward solutions is to use the exhaustive

enumeration of X \ P(ξ) (for smaller problems) or to use a blind random search, that

is, to choose the best point from a set of candidates sampled independently from X \

P(ξ). This can be performed by a direct rejection method, which, however, tends to be

very inefficient for some cases. Therefore, we recommend exploiting particularities of the

privacy constraints, if possible (as for example in Sections 3 or 4).

For any maximal design ξ and any point x ∈ A(ξ), let η(ξ, x) be a possibly random

maximal permissible design based on ξ, containing x. We can view {η(ξ, x) : x ∈ A(ξ)} as

a randomly generated neighbourhood of the design ξ in the set of all maximal permissible

designs, or, in other words, a set of slight “mutations” of the design ξ. The mutation

procedure given by Algorithm 2 calculates η(ξ, x) for any permissible design ξ and x ∈

A(ξ).

55

Algorithm 2: Mutation Procedure (MuP)

Input : A permissible design ξ, |ξ| = N and a candidate point x ∈ A(ξ).

Output: A permissible design ξ, |ξ| = N .

1 Remove from ξ all those points that belong in P(x).

2 Let ξ = ξ ∪ {x}.

3 if |ξ| = N + 1 then

4 Remove the design point from ξ that leads to the smallest drop in the

criterion value.
5 else if |ξ| < N then

6 Augment the design ξ using GrP to the maximal design.

7 end

8 return ξ

The main body of the Privacy Sets Algorithm can then be written in the scheme of

Algorithm (3).

PSA does not pose any restrictions on the design space X . Due to implementation

reasons, however, we always assume a finite design space of size n ∈ N. If n is relatively

small (up to thousands of design points, say), the implementation of PSA is rather simple

for all kinds of privacy sets. This is mainly true because of the ability to store information

about availability of each individual point of the design space. However, with n increasing,

it becomes computationally intensive or even infeasible to keep n-dimensional vectors in

the computer memory and certain specific features of a particular class of privacy sets

have to be considered.

3 Privacy sets for Bridge designs

Let δ be a given positive constant. In case of Bridge designs (BDs), the privacy set of

a point x ∈ X is given by (3.6). This suggests that the focus of BDs is on the space-

fillingness of one-dimensional projections of the design points, since no two levels of a

given factor can be closer than δ. Motivation for this requirement can be drawn from

the non-collapsingness of the design in the case that some of the factors turn out to be

56

Algorithm 3: Privacy Sets Algorithm (PSA)

1 Construct an initial design ξ using GrP.

2 repeat

3 Set ξold ← ξ.

4 Construct candidate set A(ξ).

5 for x ∈ A(ξ) do

6 Set η ← η(ξ, x) using MuP.

7 if φ(η) > φ(ξ) then

8 Set ξ ← η.

9 break the for cycle

10 end

11 end

12 until φ(ξold) ≥ φ(ξ);

13 return ξ

irrelevant (see Section 1.1).

In this section, we assume X = [−1, 1]d, that is, every factor takes values in a bounded

interval, which can be scaled to [−1, 1]. We assume that X is discretized into a grid of

n = Ld, L ∈ N, equally spaced points with each coordinate from {−1+ 2k
L−1

, k = 0, 1, 2, . . . ,

L − 1}. Without loss of generality, we will choose the minimum spacing δ from the set{
2k
L−1

, k = 1, 2, . . .
}

.

The requirement of N experimental runs implies δ ≤ 2/(N − 1) and L ≥ N . Note

that for the special case L = N , we obtain Latin hypercube designs (LHDs). If L > N

and δ = 2/(L− 1), the resulting design can be viewed as an “incomplete” LHD.

In general, the most computationally difficult part of PSA is the one-point permissible

augmentation in Algorithm 1. Using the specific nature of Bridge designs defined on

[−1, 1]d, we implemented this step in two parts.

In the first part, we perform a blind random search by repeated sampling from X \P(ξ)

and selecting that point which leads to the biggest increase of the criterion value. In the

case of Bridge designs, it is enough to store just an L × d logical matrix representing

57

permissible levels of factors. Points x ∈ X \P(ξ) can then be easily selected independently,

coordinate by coordinate. In the case where additional constraints on the design space

are present (see Section 3.2), we used the rejection method.

In the second part, we tune the best point found by using a local search optimization

procedure. Its main idea is to sequentially improve the position of the design point added

in the first part, always varying only one coordinate at a time. Since all other design

points remain unchanged, we are allowed to move only in the permissible area, where

no collision with another design point occurs. The process of checking feasibility of the

prospective design space point can be handled easily when considering Bridge restrictions

(see the reasoning above). Note that this procedure does not require storing all design

points (or regressors associated with the design points) of X in the computer memory.

Therefore PSA for Bridge designs can be applied to very large design spaces.

3.1 Examples: D-optimal Bridge designs on a cubical design

space

This section provides examples of Bridge designs for specific choices of the optimization

criterion and the design space. We compare these to the results from [39], where the

same settings were considered. More precisely, we consider D-optimality criterion φD as

defined in (3.4), with the standardized information matrix given by (3.3).

This criterion leads to the optimization problem

ξ∗ ∈ arg max
ξ∈Ξ

{φD(ξ); |ξ| ≤ N and |xi − yi| ≥ δ for all i = 1, . . . , d}.

It is natural to require the design space to be a d-dimensional hypercube [−1, 1]d (for

example when conducting a computer experiment), hence we restrict ourselves to this

assumption.

With the number of trials N given, the density of the design space grid needs to be

chosen. First, we know that the minimal distance δ cannot exceed 2/(N − 1), but it is

recommended to set it to a smaller value in order to maintain a certain level of “freedom”.

Now, with the value of δ determined, we can set L = b2k/δc + 1, where k ∈ N and b.c

represents the lower integer part. In [39], the parameter k is always set to 1, yielding the

58

“incomplete” LHD. In general, the choice of small L can accelerate the algorithm, but

also impair the quality of the resulting design, which suggests that a certain compromise

should be made.

In the following examples, we illustrate the performance of our algorithm applied to

the problems of various dimensions. We compare the results obtained by our algorithm to

the results from [39], based on the relative efficiency of the best designs found in a fixed

time interval.

To make the comparison as fair as possible, we implemented both algorithms in Mat-

lab computing environment. The algorithm of [39] was translated from JMP scripting

language which was available on the supplement area of the published article. We used

64 bit Windows 7 system running an Intel Core i3-4000M CPU processor at 2.40 GHz

with 4 GB of RAM.

3.1.1 Bridge designs for 2 factors in 21 runs

As the first example, we consider the two-dimensional design space with 21 trials to

be allocated. Since this problem instance is rather small, we set the computing time

to 60 seconds and run both algorithms several times, until the whole time given is

spent. The designs with the highest criterion value found by PSA are displayed in

Figure 3.4, with the minimum spacing constant δ set to 0.05 and 0.025 for both the

linear regression function f(x) = (1, x1, x2)> and the full quadratic regression function

f(x) = (1, x1, x2, x
2
1, x

2
2, x1x2)>.

When compared to the results of [39], we observe better results of our algorithm in

all four examined situations. The mutual efficiencies of the designs of [39] relative to our

designs presented in the figures 3.4a, 3.4b, 3.4c, 3.4d are equal to 0.79, 0.82, 0.96, and

0.96, in the respective order.

This suggests that our algorithm provides better results especially when the spacing

constant δ is rather large, which is not surprising. First, the finer design space grid

automatically makes the relative difference in the output designs less significant. Second,

the greater the value of δ is in comparison to its upper bound 2/(N−1), the less space there

is for “manoeuvring” for the algorithm. For example, the marginal case δ = 2/(N − 1)

59

leads to the standard LHD, where no observation can be added without violating some

of the privacy sets constraints. These restrictions would fully disable the coordinate-

exchanges in the algorithm of [39], but could still be handled by PSA.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) linear regressor, δ = 0.05

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) linear regressor, δ = 0.025

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) full quadratic regressor, δ = 0.05

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) full quadratic regressor, δ = 0.025

Figure 3.4: Bridge designs for N = 21 and d = 2 found in 60 sec. In 3.4a and 3.4b, the

linear regressor was used and the minimal distance δ was set to 0.05 (3.4a) and 0.025

(3.4b). In 3.4c and 3.4d the full quadratic regressor was used and the minimal distance

δ was set to 0.05 (3.4c) and 0.025 (3.4d). Efficiencies of the best designs found by the

algorithm of [39] relative to the designs presented in the figures 3.4a, 3.4c,3.4b,3.4d are

0.79, 0.82, 0.96 and 0.96, respectively.

60

3.1.2 A numerical study on Bridge designs

The comparison of the algorithm of [39] and PSA can be extended into more-dimensional

cases as well. We performed a small comparative numerical study on a few examples of

quadratic regression of various dimensions, similar to the examples provided in Sections 3

and 4 of [39]. For every example, we ran the algorithms for a restricted time, observing the

time dependence of the criterion value of the actually best design found by the algorithm.

We repeated this procedure several times in order to provide responses from multiple

random starts.

In Figure 3.5, we present results of the two competing algorithms for dimensions

d = 2, 4, 6, 8 with the numbers of trials N = 21, 41, 61, 81, respectively. The minimum

spacing δ was in all four cases set to the value δ = 1/(N − 1), which corresponds to the

value recommended in [39]. Every t seconds, we plotted the criterion values of the best

designs found by the algorithm of [39] (represented by the red lines) and PSA (represented

by the blue lines) versus the time displayed on the x-axis. Both algorithms were restarted

5 times, yielding 5 red and 5 blue lines for each problem instance.

The total computational time T , as well as the time period t, were chosen such that

they increase with the increasing size of the problem. If an algorithm terminated during

the given time T , it was automatically restarted and the resulting value found by its run

was stored in the memory. These restarts are denoted by the red and the blue diamonds.

We considered the D-optimality criterion given by (3.4) and plotted its values on the

y-axis.

Note that PSA was able to significantly outperform the algorithm of [39] in all four

examined cases. We also note that PSA yielded an efficient design in a relatively short

time, which suggests that it can be reasonable to stop PSA before reaching an actual local

optimum and reduce the execution time.

3.2 Space-filling designs on a constrained design space

Note that we can practically think of any design enforcing space-fillingness of its one-

dimensional projections as a particular instance of a “Bridge design” and that this does

not necessarily include D-optimality and a cubical design region. In fact, for any such

61

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

D
−

cr
ite

rio
n

 Φ
D

(ξ
)

time (in seconds)

(a) d = 2, N = 21, T = 10, t = 0.05

0 200 400 600 800
0

0.05

0.1

0.15

0.2

0.25

0.3

D
−

cr
ite

rio
n

 Φ
D

(ξ
)

time (in seconds)

(b) d = 4, N = 41, T = 800, t = 2

0 500 1000 1500 2000 2500 3000 3500
0

0.05

0.1

0.15

0.2

0.25

0.3

D
−

cr
ite

rio
n

 Φ
D

(ξ
)

time (in seconds)

(c) d = 6, N = 61, T = 3600, t = 5

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

0.3

D
−

cr
ite

rio
n

 Φ
D

(ξ
)

time (in seconds)

(d) d = 8, N = 81, T = 7200, t = 10

Figure 3.5: Comparison of the performance of the algorithm of [39] (red lines) and PSA

(blue lines). Y-axis shows the best D-optimality values found by the time displayed on the

x-axis (in seconds). The red and the blue diamonds denote restarts of the corresponding

algorithms. For every example both algorithms were run 5 times for the time period T .

design, it is enough to satisfy (3.6), that is, restrictions ensuring non-collapsing properties

of the design. As an example, in this section we present space-filling on a constrained

design space.

For that purpose, we choose one of the space-filling criteria to be optimized, which

means that we combine together “soft” and “hard” methods described in Section 1.1. We

consider the (modified) average reciprocal distance (ARD) criterion defined by (3.5).

Each design point has to be selected from a design space, which will be some linearly

constrained region in this case. However, the PSA algorithm for Bridge designs on cubical

regions, described at the beginning of Section 3, can be rather straightforwardly adapted

62

for the constrained design regions.

Without loss of generality, assume that the design space X is a subset of [−1, 1]d with

some additional linear constraints Ax ≤ b to be satisfied for every x ∈ X , where A is an

k × d matrix, k ∈ N, and b ∈ Rk. For a given number of trials N , let us have the design

space discretized by first making a grid of Ld points on [−1, 1]d, and then accepting only

those satisfying Ax ≤ b. The parameter L, determining the density of the grid, has to be

chosen large enough, such that not only a permissible design ξ ∈ X exists, but also that

Assumption 2.1 is satisfied.

The only question is how to implement the one-point permissible augmentation from

Algorithm 1. We utilize blind random search on the set X \P(ξ) and select the best point

found. In the case of a Bridge design on [−1, 1]d, we have a simple tool to sample from

X \ P(ξ), by keeping track of permissible and non-permissible levels of individual factors

(as described at the beginning of Section 3). If additional linear restrictions are present,

x ∈ X \P(ξ) can be generated in the same way and then simply accepted if the condition

Ax ≤ b holds and rejected otherwise. Clearly, effectiveness of this rejection method

depends on the design region defined by the constraints, as well as on the dimension d.

In every step, we have to check the restriction on the design space, but we do not have to

check the collision with other design points in terms of privacy sets (due to the convenient

Bridge constraints), which makes the rejection method more efficient than in the case of

general privacy sets.

Figure 3.6 displays three resulting designs obtained by PSA for different variants of the

ARD criterion. The design space is in all three situations the square [−1, 1]2 additionally

restricted by 1
2
x1 − x2 ≤ 1

2
. We considered designs with N = 100 runs and the minimum

spacing parameter δ = 2
120−1

. We note that in this case, it is not possible to set δ = 2
N−1

(“LHD-setting”), since Assumption 2.1 would not be fulfilled and the PSA algorithm

could not be executed.

The parameters of the ARD criterion (3.5) were set to z = 1 and λ = 1. The nonempty

index set J ⊆ {1, 2} varies in figures 3.6a, 3.6b, 3.6c through all three possibilities, leading

to different output designs. Space-filling properties of these designs for various settings of

ARD criterion were compared and it shows that the designs constructed with J = {1, 2}

are almost optimal also for criteria with J = {1} and J = {2}.

63

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
1

x 2

(a) J = {1}

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
1

x 2

(b) J = {2}

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
1

x 2

(c) J = {1, 2}

Figure 3.6: Designs on the two-dimensional constrained design region, obtained by PSA

optimizing the ARD criterion for z = 1, λ = 1 and different values of J ⊆ {1, 2}. PSA

allocated 100 trials for the minimum spacing constant δ = 2
120−1

.

Histograms in Figure 3.6 display space-fillingness of one-dimensional projections of

the designs. Ideally, we would like to have these projections as uniformly distributed

as possible (corresponding to Latin hypercube constraints), which would ensure non-

collapsing properties in one-dimension. One could quite easily think of a heuristics forcing

perfectly uniform one-dimensional projections of a design. However, we think it can be

more beneficial to “relax” constraints from LHD to BD for some smaller value of δ, if this

allows us to improve another optimization criterion, e.g., the criterion assessing space-

filling properties of more-dimensional projections (ARD for J = {2} or J = {1, 2}). In

this sense, we can compare designs of Figure 3.6 to the design from the paper [55], given in

Figure 4 (a) of Section 2.3, which differs only in the scaling of the design space. Although

64

the design of [55] strictly satisfies Latin hypercube constraints (see the histograms of

one-dimensional projections), it completely ignores space-fillingness in other dimensions.

Figure 3.7 presents an example of a design resulting from PSA for ARD criterion in

three factors. The three-dimensional design space cube [−1, 1]3 is additionally constrained

by 2
3
x1 − x2 ≤ 1

3
and 3

4
x2 − x3 ≤ 1

4
. The design consists of N = 100 trials with their

one-dimensional projections not closer together than δ = 2
140−1

. The ARD criterion was

employed for z = 1, λ = 1 and J = {2, 3}, which means that we combined the “hard”

method forcing one-dimensional space-fillingness and the “soft” method ensuring space-

filling properties for dimensions 2 and 3.

65

−1 0 1
0

5

10

15
x

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
0

5

10

15
x

2

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
0

5

10

15
x

3

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

Figure 3.7: Design on the three-dimensional constrained design region,

obtained by PSA optimizing the ARD criterion for z = 1, λ = 1 and

J = {2, 3}. PSA allocated 100 trials for the minimum spacing constant

δ = 2
140−1

.

66

4 Privacy sets for Minimum-distance designs

In Section 2.1 we have proposed the prototype algorithm PSA, which was efficiently

implemented for Bridge designs (Section 3). The reason was that some specific features

of Bridge designs could be used in order to save both the computer memory and the

computational time, so that even large design spaces could be dealt with. Analogously,

we solve large-scale problems for another type of privacy sets in this section - privacy

sets based on the Euclidean distance - defined by (3.7). These Minimum-distance designs

(MDDs) seem to be very natural and adequate for the “hard” space-filling methods, but

there is no appropriate efficient algorithm yet to handle these restrictions.

4.1 Motivation

It seems straightforward to require space-filling designs to satisfy Minimum-distance con-

straints. Interestingly, there is some additional motivation arising from other scientific

disciplines. More precisely, the same type of “privacy sets” was discovered in some of the

patterns in the nature. Most of the information presented in this section can be found in

the popular-scientific article [81].

One of the most recent examples stems from biology: In the eye of a chicken, the

color-sensitive cone cells that carpet the retina exhibit a curious mix of randomness and

regularity, as shown in Figure 3.8. If we separate the cone types according to the color,

Figure 3.8: Apparent disorder in the arrangement of green, blue, red, violet and double-

type (black) cone photoreceptors in a chicken’s retina. (Image source: [81].)

we can see that they never get “too close to each other”. In other words, there is a

Minimum-distance privacy set (in the terminology of the cited article, an exclusion region)

67

of a certain size δ corresponding to each type of the cone cells, see Figure 3.9. This

phenomenon was named hyperuniformity.

Figure 3.9: Minimum-distance privacy sets (exclusion regions) for five different types of

cone cells, each of a different size. (Image source: [81].)

Beyond bird’s eyes the similar kind of the “disordered hyperuniformity” was found

in quasicrystals, as well as in random matrices, the large-scale structure of the universe,

quantum ensembles, and soft-matter systems like emulsions and colloids. Another simple

example of this pattern is a “shaken box of marbles” which fall into an arrangement called

maximally random jammed packing.

4.2 Voronoi diagrams and Delaunay triangulations

Every type of the privacy sets has its own characteristics that must be taken into account

when applying PSA. Step 2 in Algorithm 1 (Greedy Procedure) is crucial in the PSA

implementation, see Section 2.1. The essence of this step is to increment the current

design with the best (or at least a good-enough) permissible point x ∈ X \P(ξ). However,

68

solely generating any permissible x may be a difficult task in the case of Minimum-distance

restrictions. Of course, a straightforward solution is to sample uniformly on X = [0, 1]d,

rejecting impermissible points x ∈ P(ξ). It is not hard to imagine though how ineffective

this method becomes - in higher dimensions, or simply in case of a small permissible area,

as shown for instance in Figures 3.14c and 3.16.

Figure 3.10: An example of a Minimum-distance design in X = [0, 1]2 with δ = 0.2.

The blue squares denote the vertices of the Voronoi diagram. The red squares represent

permissible intersections of the edges of the Voronoi diagram with the boundary of [0, 1]2

(see Lemma 4.7).

The blue squares displayed in Figure 3.10 represent the main “tool” of the method

proposed in this section - the vertices of the so-called Voronoi diagram (VD). Formally,

let C be a set of N points in X ⊂ Rd, called the generating points. For each c ∈ C let

Rc = {x ∈ Rd : ρ(x, c) ≤ ρ(x, c̃) for all c̃ ∈ C \ {c}}

denote its Voronoi cell (also called the Voronoi region).

The Voronoi diagram (or the Voronoi tessellation) is then the polyhedral cell complex

given by cells {Rc}c∈C, where a polyhedral cell complex denotes a collection of polyhedral

cells and its faces of all dimensions. In other words, Voronoi diagram of C (VD(C)) divides

X into N regions {Rc}c∈C, such that region Rc consists of points of Rd whose distance

from c ∈ C is smaller than (or at most equal to) the distance from any other generating

point. We remark that a VD is not a “decomposition” in a strictly mathematical sense,

because some of the points of Rd may belong to two or more Voronoi cells. The former

69

and the following definitions, as well as the theoretical information on VDs, are mostly

taken from [4], eventually from [3].

For clarity, we provide the following definition.

Definition 4.1 In d-dimensional Euclidean space, let k-flat denote its k-dimensional

affine subspace, and let (d − 1)-sphere denote the set of points {x ∈ Rd : ρ(x, c) = r},

where c ∈ Rd is the centre of the (d− 1)-sphere and r ∈ R is its radius.

Assumption 4.1 We assume no d + 1 points of C are located in the same (d − 1)-flat,

and, simultaneously, no d + 2 points lie on the same (d − 1)-sphere. Then, points C are

considered to be in a general position.

In the following, we always assume the general position of the points C, since this can be

in practice easily achieved by a slight shift of the particular points.

Note that while the former assumption of Assumption 4.1 corresponds to the standard

general linear position of points C in Rd, the latter one relates to the “lifting” transfor-

mation of C into a space one dimension higher. There is an equivalence between the

problem of constructing the VD(C) and the problem of finding the convex hull of the

set of points in Rd+1 obtained by giving each point c ∈ C an extra coordinate equal to

‖c‖2. In fact, one of the most fundamental algorithms of computing VDs is based on this

very principle, see Section 4.4. This close relationship between VDs in Rd and convex

polyhedra in Rd+1 relies on the fact that the transformation onto the paraboloid in Rd+1

maps (d− 1)-spheres in Rd bijectively onto the nonempty intersections of the paraboloid

in Rd+1 with the non-vertical hyperplanes (see, e.g., Section 4.1 in [2]). This implies that

the latter assumption of the “non-cocircularity” of d+2 points exactly corresponds to the

lifted points being in a general linear position.

VD is a so-called face-to-face cell complex in Rd that consists of the polyhedral faces of

various dimensions. (A cell complex is face-to-face, if a nonempty intersection of two cells

is a face of both cells.) In particular, each Voronoi cell is a convex polyhedron (bounded

or unbounded). Moreover, Assumption 4.1 guarantees that exactly d + 1 edges,
(
d+1

2

)
facets and d+ 1 cells meet at each Voronoi vertex. Such complexes are called simple cell

complexes in Rd.

70

The concept of the Voronoi diagrams is tightly related to the following dual structure:

Let any two points c, c̃ ∈ C be connected by an Delaunay edge, iff there exists a facet

(i.e., a (d − 1)-dimensional face) in VD(C) shared by both Rc and Rc̃. Since VDs are

structurally simple cell complexes (as discussed in above), their duals are necessarily

the so-called simplicial complexes (and vice versa), where a “simplicial complex” is a

polyhedral cell complex such that all of its cells are d-dimensional simplices. In some

literature, such a simplicial complex is called simply a triangulation. For simplicity, we

have also decided to use term “triangulation” throughout the thesis to denote a simplicial

complex in any dimension (not just in the dimension d = 2).

Provided the generating points are in a general position (as defined in above), the

set of the Delaunay edges forms a unique triangulation in Rd - the so-called Delaunay

triangulation of C (DT(C)). That is, Assumption 4.1 guarantees that no Delaunay simplex

is degenerate, and, simultaneously, ensures uniqueness of the triangulation.

Delaunay triangulation of the point set C can also be equivalently defined to contain all

those d-simplices with vertices in C whose circum-hyperspheres do not contain any other

points of C (see, e.g., [4]). This property is often referred to as the empty-hypersphere-

property (or more commonly in R2 - empty-circle-property). In this work, we also refer to

this assumption as the “DT condition”. To check the DT condition one needs to construct

the circum-hypersphere of every simplex. The center of this hypersphere is obviously a

Voronoi vertex, which is called dual to the original simplex. In the same fashion, any

point c ∈ Rc is considered dual to the Voronoi cell Rc itself.

We would like to note that the terminology varies in the literature: For instance, “tri-

angulation” is sometimes considered exclusively a two-dimensional simplicial complex,

and is replaced by term “tessellation” in higher dimensions. On the other hand, “tessel-

lation” can also denote a cell complex that admits other polyhedrical cells (other than

simplicial) as well - for example in the case of d + 2 generating points lying on the same

(d − 1)-sphere. In such cases, [51] operates with the term “pre-triangulation” in R2,

eventually “pre-tessellation” in higher dimensions.

71

4.2.1 Voronoi diagrams and Delaunay triangulations in R2

In two-dimensional Euclidean space, simplices are merely triangles and every Voronoi

vertex is equidistant to exactly three generating points (under Assumption 4.1). Every

Delaunay edge connecting points c, c̃ is dual to the Voronoi edge shared by the Voronoi cells

Rc,Rc̃. Moreover, these two mutually dual edges are orthogonal (but do not necessarily

have to intersect each other).

Let us now proceed by clarifying the connection of Voronoi diagrams to PSA for MDDs.

The following Lemma 4.2 uses the term bounded Voronoi cell; we remark that this refers

to the VD in R2, not in [0, 1]2, where it would be automatically satisfied for each Voronoi

cell.

Lemma 4.2 Let C be a set of generating points in R2. Let c ∈ C be such that its Voronoi

cell Rc is bounded. For every x ∈ Rc, let us measure the distance ρ̃ : x→ ρ(x, c). Then,

for any point x ∈ Rc \{c}, there exists a Voronoi vertex v of Rc, such that the directional

derivative of ρ̃ in x and in the direction of v is non-negative, i.e., 〈∇ρ̃(x), v − x〉 ≥ 0.

Proof

First, let us construct a ray starting in c and passing through x. For a bounded Rc, the

intersection of this ray and the border of the convex polyhedron Rc is a single point y (it

holds that c lies in the interior of Rc). Point y can either be a Voronoi vertex itself, or it

can lie in some Voronoi edge e. In the former case, simply denote the Voronoi vertex by

v. In case of the latter, let v denote the vertex of e for which it holds that angle ∠cyv is

obtuse. (Note that if cy 6⊥ e there always exists such an obtuse angle. In case cy ⊥ e let

v be any of the two Voronoi vertices of edge e.)

One can easily verify that ρ̃ is differentiable in Rc \ {c} and that ∇ρ̃(x) = x−c
ρ(x,c)

. Now,

we have 〈∇ρ̃(x), v − x〉 = 〈 x−c
ρ(x,c)

, v − x〉 = ρ(x, c)−1〈x − c, v − x〉. When neglecting the

positive constant ρ(x, c)−1, we have

〈x− c, v − x〉 =

〈
x− c+ v

2
+
v − c

2
,−
(
x− c+ v

2

)
+
v − c

2

〉
=

= −ρ2

(
x,
c+ v

2

)
+

〈
x− c+ v

2
,
v − c

2

〉
−
〈
v − c

2
, x− c+ v

2

〉
+
ρ2(v, c)

4
=

= −ρ2

(
x,
c+ v

2

)
+
ρ2(v, c)

4
. (3.9)

72

We know that the angle ∠cyv is obtuse (or at least right) and also that x lies in the

line segment cy. Thus, the angle ∠cxv is obtuse (or at least right) as well and Thales’s

theorem implies that x lies in the interior of the circle with the center at c+v
2

and the

radius ρ(v,c)
2

. In other words, it holds that

ρ(x,
c+ v

2
) ≤ ρ(v, c)

2
. (3.10)

Now applying (3.10) onto (3.9), we get

〈x− c, v − x〉 ≥ −ρ
2(v, c)

4
+
ρ2(v, c)

4
= 0,

which concludes the proof. �

The key role of Voronoi vertices in our algorithm is justified by the following theorem.

Theorem 4.3 Let ξ be a permissible Minimum-distance design in X = [0, 1]2 with pri-

vacy sets given by (3.7) and let us have the Voronoi diagram on ξ. Let q /∈ ξ be a

permissible point in X , such that q ∈ Rc for some bounded Rc, c ∈ ξ. Then, there exists

a Voronoi vertex v, such that the whole line segment vq is permissible. In particular, the

Voronoi vertex v itself is permissible.

Proof

Let v be constructed identically as in Lemma 4.2, with q substituted for x. For function

f : λ→ ρ(λq + (1− λ)v, c), λ ∈ [0, 1], it holds that

f ′(λ) = 〈∇ρ̃(λq + (1− λ)v), q − v〉 = −λ−1〈∇ρ̃(λq + (1− λ)v), v − (λq + (1− λ)v)〉,

where ρ̃ is defined as in Lemma 4.2. Now denoting xλ = λq + (1 − λ)v and employing

Lemma 4.2, we get

f ′(λ) = −λ−1〈∇ρ̃(xλ), v − xλ〉 ≤ 0.

Thus, function f is non-increasing, which implies ρ(xλ, c) ≥ ρ(q, c). From the permissi-

bility of q it follows that ρ(xλ, c) > δ for every xλ ∈ vq.

Since xλ = λq + (1 − λ)v ∈ Rc, we know that ρ(xλ, c̃) ≥ ρ(xλ, c) > δ for all design

points c̃ ∈ ξ and all values of λ ∈ [0, 1], which concludes the proof. �

Theorem 4.3 allows for the following metaphor: For a minimum distance design given,

the design region is partly blocked by the privacy sets of the design points. The remaining

73

space, permissible for the possible augmentation point, can represent a “Swiss-cheese-like”

gallery. If we position guards to the Voronoi vertices, then these guards can oversee each

point of the gallery (provided that the gallery consists only of the bounded Voronoi cells,

which is discussed in more detail in Section 4.3). One can also be interested in finding

the minimum number of the necessary guards, which leads to a particular variation of

the well-studied optimization problem of the computational geometry - the so-called art

gallery problem.

4.2.2 Voronoi diagrams and Delaunay triangulations in Rd

In a general-dimensional Euclidean space, we assume the following conjecture to hold.

Our assumption is based not only on the geometric intuition, but also on the numerical

results of Privacy sets algorithm for MDDs (see Section 4.7). The proof could extend

the ideas of the proof of Theorem 4.3, but the complexity of the geometry of VDs in Rd

makes this generalization not straightforward at all. One should also keep in mind that

PSA is a heuristic method, which means that its theoretical justification is welcome, but

not crucial.

Conjecture 4.4 Let ξ be a permissible Minimum-distance design in X = [0, 1]d with

privacy sets given by (3.7) and let us have the Voronoi diagram on ξ. Let q /∈ ξ be a

permissible point in X , such that q ∈ Rc for some bounded Rc, c ∈ ξ. Then, there exists

a Voronoi vertex v, such that the whole line segment vq is permissible. In particular, the

Voronoi vertex v itself is permissible.

4.3 Power diagrams and regular triangulations

Theorem 4.3 assumes the permissible point q to belong to a bounded Voronoi cell. How-

ever, it can easily happen that the Voronoi cell containing q is unbounded. This can

be avoided by augmenting C ⊂ R2 with three extra points forming a large triangle, the

so-called super-simplex, which contains the whole design space X . Moreover, the vertices

of the super-simplex have to be located far enough not to change the VD on X ; in other

words, no point from X is allowed to lie in a Voronoi cell of one of these three additional

points. But there are only three unbounded Voronoi cells in the VD - exactly those cor-

responding to the three vertices of the super-simplex. Thus, the assumptions of Theorem

74

4.3 hold for every q ∈ X . However, if the “permissible” Voronoi vertex v lies outside of X ,

it cannot be used as a starting point for the design augmentation (see Step 9 of Algorithm

5). We discuss this issue more closely in this section.

Intuitively, the red squares in Figure 3.10 suggest to search for the intersections of the

faces of the VD with the boundary of the cuboid design space (in addition to the Voronoi

vertices lying in X). For the two-dimensional space, in Lemma 4.7 we will prove that

these intersections can be determined by constructing the so-called power vertices on the

particular edge of X = [0, 1]2.

The power vertices are simply vertices of the so-called power diagram, as defined in

the following. Let wc ∈ R be a (not necessarily non-negative) weight corresponding to

some c ∈ Rd and denote this couple by g = (c, wc). Now define the “power” of a point

x ∈ Rd with respect to g as

pow(x, g) = ρ2(x, c)− wc. (3.11)

For every g from a given finite set G, the region

Rg = {x ∈ Rd : pow(x, g) ≤ pow(x, g̃) for all g̃ ∈ G \ {g}}

denotes the power cell of g. The collection of all power cells Rg, g ∈ G (and all their

faces included), is called the power diagram of G (PD(G)), see Figure 3.11 for illustra-

tion. Similarly to VDs, PDs are face-to-face cell complexes with each cell being a convex

polyhedron.

PDs are clearly generalizations of VDs defined in Section 4.2, with each of the gen-

erating points having its own weight - the greater the weight of a generating point, the

more it “attracts” other points from X . If wc is positive, it can be represented by a

hypersphere with centre c and radius rc =
√
wc. Note that our definition of a power

diagram is taken from [4]. In some of the previous works on the topic (e.g., in [2]), the

term “power diagram” relates to the non-negative weights only and is replaced by term

“weighted Voronoi diagram” when negative weights are admissible as well.

Now assume wc = r2
c > 0 for some g = (c, wc) ∈ G. For a point x lying outside

of the hypersphere S with centre c and radius rc, the Pythagorean theorem yields the

75

(a) (b)

Figure 3.11: An illustration of the power diagrams on one of the faces of the cube X =

[0, 1]3 for the example displayed in Figure 3.15. Various sets of weights can yield the

same diagram. The red circles denote positive weights, the dashed grey circles negative

ones. We have shifted these weights into the non-negative values, keeping the resulting

PD unchanged (Figure 3.11b).

geometrical representation of pow(x, g) as the square of the length of a line segment from

x to a point t of tangency with hypersphere S, as illustrated in Figure 3.12. Point x lying

exactly on S has pow(x, g) = 0, and the power of a point inside S with respect to g is

negative.

Figure 3.12: An illustration of the power function (3.11) in dimension d = 2.

Let g = (c, wc) and g̃ = (c̃, wc̃) be two weighted generating points in Rd, c 6= c̃. The

set of points x satisfying pow(x, g) = pow(x, g̃) forms a hyperplane perpendicular to the

line connecting c and c̃, given by

h : 2〈x, c− c̃〉 = wc̃ − wc − ‖c̃‖2 + ‖c‖2. (3.12)

76

Hyperplane h is called the radical axis of g and g̃.

PDs are uniquely determined by the set of the generating points and their correspond-

ing weights. This does not hold in the opposite direction, though: Various sets of weights

may yield the same PD. For instance, equal weights wc = const for all generating points

c obviously yield the same diagram - the standard Voronoi diagram, no matter the size of

the constant. The equation of the radical axis (3.12) of two weighted generating points

g = (c, wc) and g̃ = (c̃, wc̃) implies that if the difference wc̃ − wc is constant, the radi-

cal axis remains the same. Thus, the simple adding of a constant to the weights of all

generating points does not change the resulting diagram.

Also note that one of the main differences between PDs and VDs is that there does

not necessarily have to exist a power cell corresponding to every generating point in a

PD. The power cell of such a point with the weight too small (in comparison to the other

generating points) is simply empty (see [2] for more information).

Analogously to Assumption 4.1, the general linear position of points G ⊂ Rd is as-

sumed, that is, no d+ 1 points lie in the same (d− 1)-flat. The second assumption of no

d+ 2 “cocircular” points is replaced by its weighted analogue: There exists no point from

Rd for which it holds that its power with respect to at least d + 2 generating points is

equal. This condition is equivalent to the general linear position of points g = (c, wc) ∈ G

lifted to Rd+1 by obtaining an extra coordinate equal to ‖c‖2 − wc (see, for instance,

Definition 5 in [76]).

The geometric dual (in the sense described in Section 4.2) of a power diagram PD(G)

will be called a regular triangulation - RT(G), since this, what might be called a “weighted

Delaunay triangulation”, has a property of regularity, which is explained as follows: First,

it is possible to show that for any simplex ∆ there exists a unique sphere σ orthogonal to

each of its vertices. The orthogonality in this sense is defined as ρ2(c, s) = wc +ws, where

c is a vertex of ∆ with weight wc, s is the centre of σ and ws is the squared radius of σ.

Clearly, sphere σ can be also viewed as a weighted point in Rd.

Similarly, one could denote two weighted points g̃ = (c̃, wc̃), σ = (s, ws) as obtuse iff

ρ2(c̃, s) > wc̃ + ws, (3.13)

77

and, subsequently, for a given set of the generating points G, call simplex ∆ regular, if any

other point of G not belonging to ∆ is obtuse to σ (see [4] for more detailed information).

A triangulation (i.e., a simplicial complex), is then called regular, if it contains regular

simplices only. Note that the weighted points with empty power cells are not included in

the RT: they may be simply left out.

Orthogonality of σ = (s, ws) to each (weighted) vertex g in fact means ws = pow(s, g)

for every g, that is, s can be viewed as a weighted circumcenter of ∆. DT condition in

the standard case says that no generating point is closer to the circumcenter of a simplex

than the vertices of the simplex themselves. A weighted analogue to the DT condition -

“RT condition” - is ensured by the assumption of obtuseness of every g̃ ∈ G, g̃ /∈ ∆, since

(3.13) is equivalent to ws < pow(s, g̃). In case of the non-weighted generating points, this

assumption coincides with the empty-hypersphere-property defined in Section 4.2.

Let us now proceed to explaining the role of the power diagrams and the power itself

in our Privacy sets algorithm. First, we need to generalize the class of Minimum-distance

designs by allowing δ to be a function defined on X :

Definition 4.5 Let X be a design space and let δ : X → R+
0 . Then ξ is a weighted

Minimum-distance design if the privacy set of any x ∈ X is given by

P(x) = {y : ρ(x, y) ≤ δ(x)}. (3.14)

Let ξ ⊂ X be a weighted MDD and let q /∈ ξ be a permissible point in X . The relation

between weighted MDDs and PDs is then explained by the following equivalences:

ρ(q, c) > δ(c) ⇔ ρ2(q, c)− δ2(c) > 0 ⇔ pow(q, (c, δ2(c))) > 0 for all c ∈ ξ.

Thus, point q ∈ X is permissible iff its power with respect to each design point c ∈ ξ with

the weight given by wc = δ2(c) is positive. Note that in case δ(c) = 0 for some c ∈ ξ, the

power is simply the Euclidean distance, which is positive for every q 6= c.

4.3.1 Power diagrams and regular triangulations in R

Consider the situation in the two-dimensional space, as depicted in Figure 3.10. The

relatively uncomplicated geometry of VDs and DTs in R2 allowed us to derive some

key results in Section 4.2.1. Nevertheless, as argued in the previous section, finding a

78

permissible Voronoi vertex makes sense only as far as it lies in the design space. Otherwise,

the intersection points denoted by the red squares in Figure 3.10 are of interest.

In the following, we will show that these intersection points (the red squares) can be

determined as vertices of the one-dimensional power diagram. Let us first think of the

geometry of PDs and RTs in R. A one-dimensional simplex is a simple interval with its

two extreme points and its power vertex. A triangulation is just a collection of consecutive

intervals, which is not unique, though: the power cells of some of the generating points

may simply be empty and these points are then “left out” from the triangulation.

For power diagrams in R, an analogue of Theorem 4.3 can be proved quite straight-

forwardly:

Theorem 4.6 Let ξ be a permissible weighted Minimum-distance design with the privacy

sets given by (3.14). Let G = {(c, wc)} be a set of weighted generating points, where c ∈ ξ

and its weight is given by wc = δ2(c). Let q /∈ ξ be a permissible point in X = [0, 1], such

that q ∈ Rg̃, where Rg̃ is bounded. Then, there exists a power vertex v of PD(G), such

that the whole line segment vq is permissible. In particular, the power vertex v itself is

permissible.

Proof

In R, power cells are just intervals: Since Rg̃ is bounded, it has two extreme points -

two power vertices. Let v be its power vertex such that q lies between g̃ and v, i.e.,

pow(v, g̃) ≥ pow(q, g̃).

Permissibility of q means that for all c ∈ ξ it holds that

ρ(q, c) > δ(c).

Since both sides of the inequality 4.3.1 are non-negative, 4.3.1 is equivalent to ρ2(q, c)−

δ2(c) > 0, which means pow(q, g) > 0 for all g = (c, δ2(c)) ∈ G.

We have pow(v, g̃) ≥ pow(q, g̃) > 0 and, simultaneously, v ∈ Rg̃ implies pow(v, g) ≥

pow(v, g̃) for any g ∈ G. Thus, it holds that pow(v, g) > 0 for all g ∈ G, or, in other

words, v is permissible.

79

For any xλ = λv+(1−λ)q, λ ∈ (0, 1), it clearly holds that pow(xλ, g̃) ≥ pow(q, g̃) > 0

and this, together with the fact that xλ ∈ Rg̃, yields the permissibility of xλ for any

λ ∈ (0, 1). �

4.3.2 Intersection points in case d = 2

Assume now we have a (non-weighted) MDD ξ ⊂ X = [0, 1]2 and a permissible point

q ∈ X . Theorem 4.3 yields a permissible Voronoi vertex v. However, let us assume

v /∈ X . In the next step, we choose that edge F of X which is intersected by the line

segment vq. Denote the intersection point by u - Theorem 4.3 ensures its permissibility.

Let us now consider those design points ξs ⊆ ξ, whose privacy sets do intersect with F ,

and project them onto F by an orthogonal projection function PF . Denote the projected

sub-design (of size not greater than N) by ξFs = PF(ξs). For each projected cF ∈ ξFs ,

define its privacy set by

P(cF) = {y ∈ R : |y − cF | ≤
√
δ2 − ρ2(c, cF)},

where δ2− ρ2(c, cF) ≥ 0 is guaranteed by the assumption of the nonempty intersection of

P(c) and F for every c ∈ ξs.

If we consider F to be our new design space, we can directly employ Theorem 4.6:

The weighted MDD ξFs has weights given by δF : δF(cF) =
√
δ2 − ρ2(c, cF). The way of

constructing privacy sets of ξFs implies equivalence of the permissibility in X with respect

to δ and the permissibility in F with respect to δF . Thus, u is permissible in F and

Theorem 4.6 yields a permissible power vertex vF .

The assumptions of Theorem 4.6 are satisfied due to the presence of the weighted

super-simplex (in this case an interval) added for every edge F separately. If the weights

of the two vertices of the super-simplex are small enough (see Section 4.5 for the details),

the corresponding unbounded power cells do not intersect F at all; as a result, each point

from F lies in a power cell that is bounded.

Power vertex vF may but does not necessarily have to lie in F - in case of the latter,

we project vF onto the closest vertex of F (i.e., one of the points (0, 0), (0, 1), (1, 0) and

(1, 1)). This vertex must be permissible due to Theorem 4.6.

80

The following lemma specifies the character of the power vertices vF .

Lemma 4.7 Let G = {g} be the set of the weighted generating points in [0, 1]2. Let t

belong to the edge F of the square [0, 1]2, and let PF : X → F denote the orthogonal

projection function. Then for any g = (c, wc), g̃ = (c̃, wc̃) ∈ G, it holds that

pow(t, g) = pow(t, g̃) iff pow(t, gF) = pow(t, g̃F) for t ∈ F ,

where

gF = (cF , wcF), g̃F = (c̃F , wc̃F),

cF = PF(c), c̃F = PF(c̃),

wcF = wc − ρ2(c, cF), wc̃F = wc̃ − ρ2(c̃, c̃F). (3.15)

Proof

Without loss of generality, let x1 = 1 for all x ∈ F (other options would be x1 = 0, x2 = 1

and x2 = 0 for all x ∈ F). Thus, it holds that

ρ2(c, cF) = (1− c1)2 and ρ2(c̃, c̃F) = (1− c̃1)2. (3.16)

Now pow(t, g) = pow(t, g̃) is equivalent to

ρ2(t, c)− wc = ρ2(t, c̃)− wc̃,

(t1 − c1)2 + (t2 − c2)2 − wc = (t1 − c̃1)2 + (t2 − c̃2)2 − wc̃.

Substituting t1 = 1 and employing (3.16) we get

ρ2(c, cF) + (t2 − c2)2 − wc = ρ2(c̃, c̃F) + (t2 − c̃2)2 − wc̃,

which can be rewritten as

ρ2(c, cF) + (t− cF)2 − wc = ρ2(c̃, c̃F) + (t− c̃F)2 − wc̃,

ρ2(t, cF) + ρ2(c, cF)− wc = ρ2(t, c̃F) + ρ2(c̃, c̃F)− wc̃,

ρ2(t, cF)− wcF = ρ2(t, c̃F)− wc̃F ,

which completes the proof. �

For a power vertex vF lying on edge F , the power with respect to at least 2 points

of ξFs is equal (or with respect to exactly two points if the general position is assumed).

81

According to Lemma 4.7, vF belongs to a Voronoi edge of the original VD in R2, which

in fact means that vF is a point of intersection of the original VD and edge F . Thus,

computing power vertices on the edges of X = [0, 1]2 yields the desired intersection points

(the red squares in Figure 3.10).

Let us now recall the crucial Step 2 in Algorithm 1. For a non-maximal design ξ,

we are searching for a permissible point in X = [0, 1]2. The theoretical results derived

so far lead us to the following scenario: First, compute the VD(ξ) and remember all the

permissible Voronoi vertices that lie in X . Second, enumerate all the edges F of X and

for each one compute the PD of the projected (sub-)design PD(ξFs). Store the permissible

power vertices that lie in F . If a power vertex does not lie in F , store the corresponding

vertex of F (and thus of X) instead (i.e., one of the points (0, 0), (0, 1), (1, 0) and (1, 1)).

Note that so far, we have projected only a particular subset of the design points - ξs.

It is true that projecting only those points whose privacy sets intersect with F already

yields a permissible power vertex. However, we opted for projecting all those points that

are inevitable for computing all the intersections of the VD with the edge F . The reason

is the wider range of prospective starting points for augmenting the design, see Step 9 of

Algorithm 5.

In other words, our goal is to keep the PD constructed on F the same as if all of

the design points of ξ were projected. Projected points without the intersection receive

negative weights. It is always correct to project all the points of ξ - the points too distant

from F will be projected with the weight too small to affect the resulting PD. However,

this approach could obviously significantly slow down the algorithm. For more details on

the choice of the projected points, read further Section 4.6.

Another observation is that although both vF and q are permissible, the permissibility

of the line segment vFq is so far not guaranteed. It holds, nevertheless, that both qu and

uvF are permissible, which means there exists a continuous permissible “path” connecting

q and vF . This property is crucial for justifying the use of the intersection points in the

way described above. It could be an interesting object of the further research to prove,

eventually disprove, that the whole line segment vFq is permissible.

82

Last, we remark that there are other methods of computing intersections apart from

the one proposed in this thesis, some of them mentioned for example in Section 2.4. of

[58]. It is not the aim of this thesis to compare the speed of these methods. What is more,

being able to compute power vertices can be necessary for instance in case of a weighted

MDD (see Definition 4.5) and PSA can be in the future adapted to handle weighted MDDs

as well.

4.3.3 Power diagrams and regular triangulations in Rd

In a general-dimensional Euclidean space, we assume the following conjecture to hold.

Analogously to Conjecture 4.4, the proof would be a non-trivial extension of the ideas of

the proof of Theorem 4.6. Note that generalization of the proof of Theorem 4.6 could

be very intricate since the geometry in the one-dimensional space is extremely simple in

comparison to higher-dimensional spaces.

Conjecture 4.8 Let ξ be a permissible weighted Minimum-distance design with the pri-

vacy sets given by (3.14). Let G = {(c, wc)} be a set of the weighted generating points,

where c ∈ ξ and its weight is given by wc = δ2(c). Let q /∈ ξ be a permissible point in

X = [0, 1]d, such that q ∈ Rg̃, where Rg̃ is bounded. Then, there exists a power vertex

v of PD(G), such that the whole line segment vq is permissible. In particular, the power

vertex v itself is permissible.

4.4 Computing VDs and DTs

Consider now the original problem of constructing Voronoi diagram on a given set of

points. The duality of VDs and DTs suggests it is enough to calculate DT(ξ), implicitly

obtaining VD(ξ), too. In the following, we list some of the algorithms computing Delaunay

triangulations and point out the methods preferred in our implementation of PSA.

First, it is possible to show that the sum of two opposite angles of two adjacent trian-

gles in a two-dimensional DT is at most 180◦ (and vice versa - a triangulation with this

property is DT). This allows for a simple flip algorithm ([37]): Start with an arbitrary

triangulation and search through all adjacent pairs of triangles. If two triangles violate

83

this property, flip their common edge, that is, switch the diagonal of the convex quadri-

lateral formed by uniting the two triangles. This approach can be generalized to higher

dimensions, nevertheless, its convergence is proved for d = 2 only.

Keeping the above mentioned property in mind, one could add points to DT sequen-

tially, editing just the affected parts of the triangulation. The triangle containing the new

point is split into three triangles and then the flip algorithm is applied. Existence of a

triangle that includes the new point is ensured by adding a super-triangle to the triangu-

lation at the very beginning (as described in the previous sections). This technique, first

introduced in [29], can be extended into higher dimensions as well.

Another incremental method works by adding points one-by-one, each time checking if

the DT condition is satisfied. A generalized version of this so-called Bowyer-Watson algo-

rithm is implemented in our PSA for computing Minimum-distance designs and described

in more detail in Section 4.5. One of its advantages is its incremental nature, which is

in accordance with the point-by-point design augmentation in the Greedy procedure of

PSA. Additionally, checking DT condition requires constructing the circum-hypersphere

of every simplex. If the triangulation is Delaunay, its circumcenter is a Voronoi vertex

and Voronoi vertices are of main interest from the point of view of PSA for MDDs.

From non-sequential approaches, there is, for instance, the so-called DeWall algorithm

([12]), which is a generalization of the divide-and-conquer algorithm in d = 2 into higher-

dimensional spaces. DeWall method divides the point-set into two subsets by a cut plane,

computes DT along the plane (called the “wall”), subsequently followed by determining

two disjoint DTs on the two sides of the “wall”. This technique is known to be one of

the fastest; for our purpose, however, it is more effective to choose one of the incremental

methods described above.

The problem of constructing the DT on a set of points in Rd can be transformed into

the problem of finding the minimum convex hull of points in Rd: Elevate points in Rd

onto a paraboloid in Rd+1, compute the convex hull of the elevated points and project its

lower envelope back onto Rd, yielding the DT. This allows all convex hull algorithms to

be applied for computing DT.

Last, the so-called sweep-line algorithm (see [27]) can be employed to compute DTs

84

in dimension d = 2. This idea is further developed in [67], where the sweep-hull hybrid

algorithm was proposed. Analogously, the so-called plane-sweep algorithm can be em-

ployed in dimension d = 3. However, in higher dimensions, the intricate geometry makes

this approach infeasible.

4.5 Computing PDs and RTs: Generalized Bowyer-Watson in-

cremental algorithm

In contrast to the previous section, we do not provide a list of available methods of

computing power diagrams and their duals regular triangulations. Instead, we focus on

one technique only and describe it in detail.

Classic Bowyer-Watson algorithm is an incremental method of computing DTs (and

implicitly VDs) which we briefly discuss in Section 4.4. It was first published simultane-

ously, but independently, in [9] and [78]. Bowyer-Watson algorithm can be also adapted

for PDs and this, together with its incremental nature, makes it the perfect choice for our

PSA implementation.

The generalized Bowyer-Watson algorithm works by adding points one-by-one, each

time modifying only the part of the triangulation where augmenting the new point caused

violation of the RT condition. This adaptation of the classical Bowyer-Watson method

is so straightforward, that we provide it without any references. A pseudocode of this

method is given by Algorithm 4.

The effective implementation of Algorithm 4 can be reached by using the simplex-

connectivity when locating simplices to be removed, see [9] for details. There are several

more ways to accelerate the algorithm, which, however, are not crucial from our point

of view. In the case of computing MDDs via PSA, the incremental character of the

method already increases its speed rapidly (compared to any non-incremental procedure).

Moreover, localizing weighted circumcenters for all simplices of the triangulation, which

is required in Step 6, determines the desired power vertices without additional effort.

In Step 2 of Algorithm 4, the issue of the weights assigned to the individual vertices of

the super-simplex is not discussed. Naturally, the weights must be chosen small enough

85

Algorithm 4: Generalized Bowyer-Watson Algorithm
Input : Set of weighted generating points G = {g}.

Output: Regular triangulation T .

1 Set T = ∅.

2 Add super-simplex to T . // super-simplex contains all generating points

3 for g = (c, wc) ∈ G do

4 Set badS = ∅. // set of simplices violating RT condition

5 for T ∈ T do

6 if pow(vT , g) < rT then

// vT , rT denote the weighted circumcenter and weighted radius

of simplex T, respectively

7 Add T to badS.

8 end

9 end

10 Construct holeFacets - the set of all facets of the polytopal hole ∪T∈badST .

11 for T ∈ badS do

12 Remove T from T .

13 end

14 for F ∈ holeFacets do

15 Form the new simplex by connecting F and c and add it to T .

16 end

17 end

18 Delete redundant simplices from T . // simplices containing vertices of

the super-simplex

19 return T

86

not to influence the PD(G). This formally means that for all x ∈ X there exists g ∈ G

such that pow(x, g) ≤ pow(x, ĝ) for every vertex ĝ of the super-simplex.

In practise, this can be achieved for instance by choosing the super-simplex such that

for each its vertex ĝ = (ĉ, wĉ) it holds that

min
x∈X

ρ(x, ĉ) ≥ max
x,y∈X

ρ(x, y), (3.17)

and, simultaneously wĉ ≤ wc for all g = (c, wc) ∈ G. In case of X = [0, 1]d, the right-hand

side of (3.17) obviously equals
√
d.

Figure 3.13: One iteration of the Algorithm 4 in dimension d = 2. Weighted points

g01, g02, g03 denote the vertices of the super-simplex, g1 denotes a weighted point that is

already in the triangluation, g2 is a weighted point to be added. The star-shaped polytopal

hole (marked in green) is to be re-triangulated by excluding an old edge (marked as a

dashed line) and including new edges (marked in red).

4.5.1 Deletion methods

The exchange character of PSA requires updating the RT not only after a point insertion,

but also after a point deletion. Re-triangulating the “polytopal hole” in Figure 3.13 in

order to include also point g2 is easy - g2 simply forms a new simplex with each of the

facets of the polytopal hole (see Step 15 in Algorithm 4). Nevertheless, re-triangulation of

the polytopal hole that emerges as a result of a point removal is not that straightforward

and can be handled by several methods, some of them listed below.

87

Since our implementation of PSA was done in Matlab, we decided to utilize the avail-

able package called “Power Diagrams” ([44]), which constructs the PD of points in Rd

(and the corresponding RT) by finding the minimum convex hull of points “lifted” to a

paraboloid in Rd+1, see Section 4.4. Using the package, we simply compute the RT on

the vertices of the polytopal hole and subsequently delete the redundant simplices, i.e.,

simplices that lie inside of the convex hull of the vertices, but outside of the polytopal

hole.

Since there was no point added, all Delaunay simplices outside of the polytopal hole

keep their empty-hypersphere property and remain Delaunay in the new triangulation.

Therefore the polytopal hole can be re-triangulated without any further changes outside

of it. Computing DT on the vertices of the hole thus yields a triangulation in which there

exists a union of triangles forming the polytopal hole exactly. The remaining triangles

not included in the union are then those to be removed.

Alternatively, one can for instance employ the algorithm proposed in [18], which makes

use of the duality between DTs in Rd and convex hulls in Rd+1, too. This method is based

on the shelling algorithm and can be generalized for dimensions higher than d = 2, as

well as for RTs.

4.6 Implementation of PSA for Minimum-distance designs

This section provides particularities about the implementation of PSA for MDDs. Recall

that we still employ the general privacy sets framework 3, which includes also augmen-

tation of a permissible non-maximal design (Step 2 in 1). Let us have a permissible

ξ, |ξ| = N∗ < N in the design space X = [0, 1]d. In order to augment ξ with remaining

N −N∗ points, we add points one-by-one, as given by Algorithm 5.

First note that we consider only design spaces of the cubical shape in case of MDDs,

which can be without loss of generality scaled into [0, 1]d. This assumption is required in

Lemma 4.7; computing intersections of a VD and the boundaries of a constrained design

region would most probably get much more complex.

Another issue is determining relevant design points to be projected in Step 5 of Algo-

rithm 5. If all vertices of the Voronoi cell of some design point x ∈ X lie inside of X , the

88

Algorithm 5: One-point permissible augmentation
Input : A permissible design ξ, |ξ| = N∗ < N .

Output: A permissible design ξ, |ξ| = N∗ + 1.

1 Set V = ∅. // set of permissible power vertices of all faces of X

2 Construct T - RT(ξ), by setting wx = 0 for all x ∈ ξ and employing Algorithm

4.

3 Add all permissible vT , T ∈ T , into V . // vT is the weighted circumcenter

of T

4 for every face F of X do

5 Project “relevant” x ∈ ξ onto F adjusting weights by (3.15). // see the

text for discussion

6 Construct TF - RT of the projected points using Algorithm 4.

7 Add all permissible vT , T ∈ TF , into V .

8 end

9 Sample randomly from V and perform short permissible random walks starting

at the sampled points. Let Vs denote the resulting set of points.

10 Set x∗ ∈ arg maxx∈Vs φ(ξ ∪ {x}).

11 Set ξ = ξ ∪ {x∗}.

12 return ξ

89

projection PF(x) onto any face F clearly plays no role in the PD computed on F . Thus,

when projecting onto a (d − 1)-dimensional face F , it is enough to project only points

with at least one Voronoi vertex lying in the half-space not containing X , with respect to

the dividing-hyperplane given by F . This approach is adopted for the lower-dimensional

faces recursively in the same fashion. Note that projecting unnecessary points can speed

down the computations, but cannot change the resulting PD - their cells will simply be

empty.

Choosing a vertex x ∈ V is subsequently followed by performing a short random walk

in the permissible design area, see Step 9 of Algorithm 5. This random walk can locally

improve the design, similarly to the local search procedure of PSA for Bridge designs -

as described in Section 3. It is not inevitable, though, the random walk can simply bring

additional variability into the procedure. In our implementation, we choose the length of

the step randomly and always change just one coordinate at a time.

4.7 Examples

In this section, we provide some examples of Minimum-distance designs found by PSA.

In order to be able to evaluate the performance of our algorithm, we compare the results

to the designs obtained by some of the competing methods. Unfortunately, due to the

complexity of the optimization problem (3.8) for privacy sets given by (3.7), there are not

many suitable algorithms available. On the other hand, the lack of appropriate methods

is one of the reasons we find our approach contributory to this area of research.

Though the main theoretical results supporting the use of our PSA for MDDs were

proved for the two-dimensional space only (Theorem 4.3 and Theorem 4.6), we imple-

mented the method for Rd based on Conjecture 4.4 and Conjecture 4.8. Our results

suggest that the algorithm can be employed in higher dimensions without any problems

(although coding of the programme for higher dimensions is technically challenging).

Our aim was to compare to the best and the most accessible algorithms and we present

two of them below. The first one - Grid algorithm is a simple exchange-type algorithm,

that we designed as a straightforward approach one would come up with when dealing

with privacy sets (3.7). Its simplicity allows for an easy implementation and makes

90

the algorithm incomparably fast. The second method - Resource constraints heuristic

or RC heuristic - is based on paper [32] and can handle a broad spectrum of linear

restrictions (called resource constraints). However, its capability to deal with large or

high-dimensional optimization problems is very limited. Both algorithms were, similarly

to PSA, implemented in Matlab computational environment, making the comparisons as

fair as possible.

Third possibility would be the use of methods of mathematical programming, namely

the so-called mixed integer second-order cone programming (MISOCP) - see [64]. Nonethe-

less, this would require the use of more advanced specialized software and, because of its

incapability to accommodate large-scale problems, there is no reason to expect the results

to significantly outperform those of RC heuristic.

Grid algorithm

Let us have a minimum-spacing constant δ and a given number of observations N . Let

us construct a grid of Ld points in X = [0, 1]d, such that no two points of the grid collide

(i.e., any two points are at least δ apart from each other). Naturally, it is advisable to

create the grid as dense as possible, which, in case of equal spacing, means L = b1/δc+ 1.

This setting ensures permissibility of any N -point design with points located on the grid.

In the first step, we add design points one-by-one using a forward greedy procedure.

In the next step, we try to increase the criterion value by exchanging some of the design

points while varying only one coordinate at a time (the so-called coordinate-exchange

algorithm, see [46]).

The equally spaced grid is certainly not the only discretization of X that ensures

condition (3.7) to hold. Any arrangement of non-overlapping d-dimensional spheres (called

also sphere packing) of radius δ/2 in X can represent a “permissible” discretization. (To

be mathematically correct - if X = [0, 1]d, then we arrange the spheres in [−δ/2, 1+δ/2]d).

One would naturally search for the densest packing possible, such as so-called close-packed

structures for the three-dimensional design space (for example, FCC and HCP lattices,

see, e.g., [13]). However, the highest densities are not known in all the dimensions and

for our purpose, the whole process of discretizating could get unnecessarily complex.

91

Resource constraints heuristic

Paper [32] offers a more sophisticated heuristic that can handle Minimum-distance con-

straints as a special case of the so-called resource constraints. This method works on finite

design spaces, viewing a design as a vector w of integer non-negative values representing

numbers of measurements in the points of the design space, i.e.,
∑

x∈X wx = N . Resource

constraints are linear constraints of form (2.2), where all constants axj are non-negative,

bj are positive and for all x ∈ X there is some j ∈ {1, . . . , l} such that axj > 0.

In order to formulate (3.7) in the terms of (2.2), let us discretize [0, 1]d into a design

space of n = Ld equally spaced points, where L ∈ N is an appropriately chosen parameter.

We remark that L does not have to coincide with the parameter L in the Grid algorithm

described above. In fact, it is possible to set L to greater values, which allows for more

possibilities of arranging a permissible design. On the other hand, the greater L is, the

slower the heuristic gets, therefore a certain trade-off must be made.

Let {Xj}lj=1 be the system of all such subsets of X that for every j = 1, . . . , l, there

exists cj ∈ [0, 1]d such that ρ(x, cj) ≤ δ/2 for all x ∈ Xj. Consequently, for every

j = 1, . . . , l, we get the linear constraint
∑

x∈Xj
wx ≤ 1, which can be rewritten into∑

x∈X I(x ∈ Xj)wx ≤ 1, where I(.) is the indicator function.

4.7.1 Minimum-distance designs for 2 factors in 21 runs

Similarly to 3.1.1, let us have N = 21 measurements located in the two-dimensional design

space. Let the dependence of y on x be modelled by the full quadratic regression function,

that is, f(x) = (1, x1, x2, x
2
1, x

2
2, x1x2)>.

Figure 3.14 shows examples of the resulting designs from Privacy sets algorithm for

three various values of the minimum-spacing constant δ. The initial design was con-

structed by the forward greedy procedure on the grid, the same way as in Grid algorithm.

All three computations were completed in less than 60 seconds and the criterion values of

the resulting designs were 0.0667, 0.0644 and 0.0630, respectively (the criterion function

was the standardized D-optimality function given by (3.4)).

The efficiencies of the designs obtained by Grid algorithm relative to the designs

displayed in Fig. 3.14 were 0.9990, 0.9914 and 0.99250, respectively. It should be said

92

(a) δ = 0.1 (b) δ = 0.15

(c) δ = 0.2

Figure 3.14: Minimum-distance designs resulting from PSA. In all the three cases, there

are N = 21 points allocated, the statistical model is full quadratic, and the minimum

spacing parameter δ takes on values 0.1, 0.15 and 0.2 in Figures 3.14a,3.14b and 3.14c,

respectively.

that Grid algorithm computed the designs in a fraction of a second. The efficiencies of the

designs found by RC heuristic relative to the designs displayed in Fig. 3.14 were 0.9982,

0.9161 and 0.9301, respectively. RC heuristic was run for 60 seconds, but we can see that

more time would be needed in order to obtain comparable results.

93

4.7.2 Minimum-distance designs for 3 factors in 16 and in 35 runs

In this example, we illustrate the behaviour of our algorithm in the three-dimensional

design space X = [0, 1]3 with the regression function given by

f(x) = (1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3, x

3
1, x

3
2, x

3
3)>.

Figure 3.15: Two-dimensional projections of the Minimum-distance design resulting from

PSA for δ = 0.2. There are N = 16 points located in [0, 1]3, but only relevant points are

projected onto the faces of the cube. Red circles denote positive weights, while weights

of the points associated with grey circles are negative - see the text for further details.

Figure 3.15 displays the two-dimensional projections of the resulting design for N = 16

measurements that are located at least δ = 0.2 apart from each other. First thing one

would immediately notice is that not all of the 16 design points are displayed in the

projections. The aim of this example is to illustrate the necessity of being able to deal

with power diagramsin PSA (Voronoi diagrams alone would not suffice). We do not

94

project the whole design, but only those points which, when projected, have non-empty

power cells (see Section 4.6 for determining these points).

The areas of the red circles are proportional to the weights of the corresponding points,

i.e., we have wc = r2
c . On the other hand, points with the grey dashed circles are more

distant from the particular face and their weights are proportional to the negative areas

of the circles: wc = −r2
c . Note that these circles are not privacy sets anymore, although

they are not completely unrelated - the red circles are exactly the intersections of the

three-dimensional privacy sets with the faces of the cube X = [0, 1]3.

The efficiency of the design resulting from Grid algorithm relative to the design plotted

in Figure 3.15 was 0.9748, although there was a significant difference in the speed of the

computation in favour of Grid algorithm - similarly to Example 4.7.1.

The design found by PSA was computed in less than 40 seconds. The performance

of RC heuristic depends very much on its initial setting - the discretization of the design

space. For the best of these settings, the efficiency of the design found by RC heuristic in

40 seconds relative to the design in Figure 3.15 was 1.0422.

In Figure 3.16, we plot two-dimensional projections of the resulting design of PSA for

N = 35 and δ = 0.34. Onto each face of X = [0, 1]3, we project only points significant

for the power diagram on that particular face, as discussed in Section 4.6. The weights

of the projected points are given by wc = r2
c , where rc is the radius of the corresponding

red circle.

The design displayed in Figure 3.16 was computed in less than 250 seconds. RC

heuristic - in its best setting - could find in 250 seconds a design with efficiency 0.9988

(relative to the design in Figure 3.16). Grid algorithm, however, was unable to provide

any solution at all: The relatively big spacing constant δ allows only for a coarse grid,

which cannot accommodate 35 design points. For a larger N , it may also happen that

none of these three algorithms will come up with a solution (a permissible design), see

more detailed comparisons in the numerical studies below.

We would like to emphasize the illustrative character of this example: We did not

choose it as a proper representative of the mutual efficiencies. Its aim was rather to

95

Figure 3.16: Two-dimensional projections of the Minimum-distance design resulting from

PSA for δ = 0.34. There are N = 35 points located in [0, 1]3, but only relevant points are

projected onto the faces of the cube. Red circles denote weights of the design points - see

the text for further details.

elucidate the mechanism of PSA on MDDs and clarify various situations that may arise

on the boundaries of the cuboid design space.

4.7.3 Numerical study: 3 factors

We conclude this chapter with numerical studies on Minimum-distance designs. Our goal

was to review the qualities of the three competing methods (PSA, Grid algorithm, RC

heuristic) in various situations that might occur in practice. We would like to underline

the difficulty of making such a comparison fair and unbiased - this is mainly due to the

great difference between the methods.

The basic idea was to let the algorithms find the best design in a given time period

96

for given values of δ and N . For all the combinations, we considered the full quadratic

regression model and the criterion of D-optimality (3.4).

δ

0 0.2 0.4 0.6 0.8 1

N

0

20

40

60

80

100

120

140

160

180

200

(a) PSA vs. Grid algorithm

δ

0 0.2 0.4 0.6 0.8 1

N

0

20

40

60

80

100

120

140

160

180

200

(b) PSA vs. RC heuristic

Figure 3.17: Pairwise comparisons of PSA, Grid algorithm and RC heuristic for various

values of δ and N for 3 factors. The color of a circle denotes which algorithm had

performed better in the given time of 60 seconds - the blue color stands for PSA, the

red for Grid algorithm, event. RC heuristic. The size of a circle designates how well the

“winning” algorithm had performed relative to the “losing” one - see the text for more

details. The blue triangle was drawn if PSA was the only algorithm of the two to find

a solution, the red triangle in the opposite case. The black plus sign signalizes that no

permissible design was found by any of the two considered methods. Note that for most

of the black plus signs, a permissible design simply does not exist.

The results of the studies are presented in Figure 3.17. The comparisons were done in

pairs, that is, Figure 3.17a confronts the resulting values of PSA versus Grid algorithm,

while Figure 3.17b depicts the values of PSA in comparison to RC heuristic. For a pair

of δ (x-axis) and N (y-axis), each of the three algorithms had 60 seconds to search for a

design with the highest criterial value.

In both figures, a blue circle designates that the criterial value of the design found

by PSA was greater than the value of the design found by the competing method (Grid

algorithm on the left, RC heuristic on the right). The radius of the particular blue circle is

97

proportional to the difference 1− effD(ξGRID|ξPSA) (eventually 1− effD(ξRC|ξPSA)), where

ξPSA, ξGRID and ξRC denote the best designs found by PSA, Grid algorithm and RC

heuristic, respectively. A red circle denotes the same for the corresponding competing

algorithm. The scales of the circles are kept the same in both figures.

Let us now discuss Figure 3.17a in more detail. First, there is a difference in the total

computational time of PSA and Grid algorithm, although there are 60 seconds allotted

to each of them. While PSA works slowly and steadily on improving the initial design,

Grid algorithm (with the initial design pre-computed) is due to its simplicity finished in a

few seconds or even less. However, constructing an initial design can be computationally

demanding and sometimes can require more than 60 seconds. For example, in the figure

there is a column of the blue triangles for most of the computations with δ = 0.05. On

the other hand, PSA can start from the same initial design as Grid algorithm (and when

possible, it does), but when required can come up with its own initial design based on

constructing Voronoi diagrams.

RC heuristic, studied in Figure 3.17b, has some specifics. Most importantly, it views

designs as arrays of weights and works on a finite design space. The key point in the

effective use of this technique is then the discretization of X into Ld grid points, which is

inevitably the result of a trade-off: The large L slows down the computations, while the

small L significantly restricts diversity of permissible solutions. Our setting in this study

was L = 5, which is rather small but brought in general the best results, since the greater

values were making the computations extremely slow. In the ideal case, one would best

try to find the most suitable value of L for every combination of δ and N separately, but

this is obviously only hypothetical and inapplicable in practice.

Clearly, the restriction of n = 53 = 125 points of the design space makes the calcula-

tions with more than 125 design points infeasible - see the blue plus signs in the figure.

Also note that the relatively coarse grid makes RC heuristic not very suitable for small

values of δ - PSA can find a better solution by enabling the design points to be closer to

each other. On the other hand, RC heuristic performs better for greater δ and it seems

it can come up with a solution in some cases when both other competing algorithms

fail. Last, we point out the decreasing “performance” of RC heuristic with the increasing

number of measurements N . Naturally, both algorithms tend to do worse as N increases,

98

simply because of the lack of the computational time. It seems, however, that for RC

heuristic this decrease in the criterial value is more rapid than for PSA.

4.7.4 Numerical study: 4 factors

For the four-dimensional design space, we have performed an analogous study. The model

was full quadratic, the criterion D-optimality and the total computational time was in-

creased to 600 seconds (because of the greater size of the problem). We have also reduced

the total number of combinations of δ and N , in order to be able to complete the study

in a reasonable time.

The results presented in Figure 3.18 show similarities to the three-dimensional exam-

ples in Figure 3.17. In Figure 3.18a, Grid algorithm performs well in many cases, but

there is still a significant number of combinations of δ and N when it finds no solution at

all (in contrast to PSA).

In the implementation of RC heuristic, the best setting turned out to be L = 3, which

yields n = 34 = 81 points of the design space. In spite of this being a ridiculously coarse

design space grid, RC heuristic has become too slow to compute (in a given time slot of

600 seconds) a permissible design even for many N smaller than 81, see Figure 3.18b.

99

δ

0 0.2 0.4 0.6 0.8 1

N

0

20

40

60

80

100

120

140

160

180

200

(a) PSA vs. Grid algorithm

δ

0 0.2 0.4 0.6 0.8 1

N

0

20

40

60

80

100

120

140

160

180

200

(b) PSA vs. RC heuristic

Figure 3.18: Pairwise comparisons of PSA, Grid algorithm and RC heuristic for various

values of δ and N for 4 factors. The color of a circle denotes which algorithm had

performed better in the given time of 600 seconds - the blue color stands for PSA, the

red for Grid algorithm, event. RC heuristic. The size of a circle designates how well the

“winning” algorithm had performed relative to the “losing” one - see the text for more

details. The blue triangle was drawn if PSA was the only algorithm of the two to find

a solution, the red triangle in the opposite case. The black plus sign signalizes that no

permissible design was found by any of the two considered methods. Note that for most

of the black plus signs, a permissible design simply does not exist.

100

Chapter IV

Results, conclusions and outlook

We conclude the thesis with a brief enumeration of the most important results. We also

provide a few suggestions for possible future extensions of the ideas presented in this work.

1 Main results

Size- and cost-constrained designs

� We have formulated the optimization problem of size- and cost-constrained designs

in its natural form in (2.13). In Proposition 2.1 in Chapter II, we have proved that

it is enough to deal with the “equality” problem (2.16) instead.

� For size- and cost-constrained designs, we have proposed an equivalence theorem -

Theorem 3.1 in Chapter II, which provides conditions equivalent to the D-optimal

size- and cost-constrained designs.

� Theorem 3.2 in Chapter II allows us to compute a lower bound on the efficiency of

any permissible size- and cost-constrained design and can be adjusted to “delete”

non-supporting points at any stage of the algorithm.

� We have proposed the barycentric multiplicative algorithm for computing D-optimal

size- and cost-constrained designs (the so-called S&C algorithm), based on the

method introduced in [31]. Moreover, Theorem 4.2 in Chapter II proves its con-

101

vergence under a mild technical condition (in the sense that the criterial values

converge to the optimum).

� We have studied the behaviour of the proposed algorithm under various parameter

settings and compared its performance to other selected competing methods. The

results presented in Figure 2.6 justify the relevance of S&C algorithm.

Privacy sets

� We have introduced the concept of privacy sets, which represent linear restrictions

on the experimental design, enforcing its space-filling properties. This approach is

in accordance with the so-called “hard” space-filling methods (in contrast to the

more established “soft” space-filling techniques).

� We have proposed a general exchange-type framework for computing designs under

space-filling constraints - Privacy Sets Algorithm (PSA) described in Section 2.1 of

Chapter III.

� For Bridge designs, we have concretized PSA into an efficient procedure, which

significantly outperforms even the state-of-the-art method (see, e.g., Figure 3.5).

� For Minimum-distance designs, we have proposed a specific version of PSA based on

the computing of the Voronoi vertices and the power vertices. The main theoretical

results are given by Theorems 4.3 and 4.6 in Chapter III, which explain the relation

between the multi-dimensional Voronoi and power diagrams and some of the crucial

steps of PSA.

� We have demonstrated the performance of PSA specified for both Bridge and

Minimum-distance designs relative to the competing techniques in several exam-

ples and numerical studies (Section 3.1 and Section 4.7 of Chapter III).

2 Future research

Size- and cost-constrained designs

The approximate D-optimal size- and cost-constrained designs have a tendency to be

sparse; that is, they have small support even if the actual size of the problem is large. We

102

use this property by employing the “deletion” rules, but the sparsity of designs can also

be utilized in several other ways.

For instance, for the standard D-optimal design problem, the paper [86] uses a com-

bination of vertex-direction, multiplicative, and vertex-exchange methods (see [8]). In

this hybrid algorithm, the vertex-exchange method maintains the support of the solutions

to be small, which is to a large extent responsible for the very good efficiency of the

algorithm, as a whole.

Another possibility is to use a simplicial decomposition algorithm, which was adapted

for computing D-optimal box-constrained designs in [75]. This algorithm is based on

alternately solving a linear programming subproblem and a non-linear restricted master

problem that finds the maximum of the objective function over the convex hull of a

typically small set of permissible points.

With some effort, these approaches could be adapted for solving the size- and cost-

constrained problem (2.16).

Privacy sets

The generality of PSA leaves enough space for the future research in many directions. So

far, we have specified this technique for Bridge designs and Minimum distance designs,

but any other type of constraints that can be viewed from the privacy-sets perspective

can be considered as well.

PSA for Minimum-distance designs can be quite straightforwardly adapted to deal with

weighted Minimum-distance designs with privacy sets of in general unequal radii given by

a function δ : X → R+
0 (see Definition 4.5 in Chapter III). It would probably require more

effort to adjust the algorithm to handle ellipsoid privacy sets (or, equivalently, cuboidal

design spaces with in general unequal edge-lengths).

One of the theoretical questions that can arise from Section 4 is identifying the maximal

number Nmax such that, for a given δ and for every N ≤ Nmax, Assumption 2.1 in Chapter

III is satisfied.

103

Bibliography

[1] Anthony Atkinson, Alexander Donev, and Randall Tobias. Optimum Experimental

Designs, with SAS. 01 2007.

[2] Franz Aurenhammer. Power diagrams: properties, algorithms and applications.

SIAM Journal on Computing, 16(1):78–96, 1987.

[3] Franz Aurenhammer. Voronoi diagrams — a survey of a fundamental geometric data

structure. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

[4] Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi diagrams and Delaunay

triangulations. World Scientific Publishing Company, 2013.

[5] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analy-

sis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization.

Society for Industrial and Applied Mathematics, 2001.

[6] Eva Benková, Radoslav Harman, and Werner G. Müller. Privacy sets for constrained

space-filling. Journal of Statistical Planning and Inference, 171:1 – 9, 2016.

[7] Dankmar Böhing. On the construction of optimal experimental designs: a penalty

approach. Statistics: A Journal of Theoretical and Applied Statistics, 12(4):487–495,

1981.

[8] Dankmar Böhning. A vertex-exchange-method in D-optimal design theory. Metrika,

33(1):337–347, 1986.

[9] Adrian Bowyer. Computing dirichlet tessellations. The computer journal, 24(2):162–

166, 1981.

[10] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-

sity Press, New York, NY, USA, 2004.

104

[11] George Casella. Statistical Design. Springer New York, New York, 2008.

[12] Paolo Cignoni, Claudio Montani, and Roberto Scopigno. DeWall: A fast divide and

conquer Delaunay triangulation algorithm in Ed. Computer-Aided Design, 30(5):333–

341, 1998.

[13] John H. Conway and Neil J.A. Sloane. Sphere Packings, Lattices and Groups, volume

290. 01 1988.

[14] Dennis Cook and Valerii Fedorov. Constrained optimization of experimental design.

Statistics, 26(2):129–148, 1995.

[15] R. Dennis Cook and Lawrence. A. Thibodeau. Marginally restricted D-optimal de-

signs. Journal of the American Statistical Association, 75(370):366–371, 1980.

[16] R. Dennis Cook and Weng Kee Wong. On the equivalence of constrained and com-

pound optimal designs. Journal of the American Statistical Association, 89(426):687–

692, 1994.

[17] Holger Dette, Andrey Pepelyshev, and Anatoly Zhigljavsky. Improving updating

rules in multiplicative algorithms for computing D-optimal designs. Computational

Statistics & Data Analysis, 53(2):312–320, 2008.

[18] Olivier Devillers. On deletion in Delaunay triangulations. International Journal of

Computational Geometry & Applications, 12(03):193–205, 2002.

[19] Vladimir Dragalin and Valerii Fedorov. Adaptive designs for dose-finding based

on efficacy–toxicity response. Journal of Statistical Planning and Inference,

136(6):1800–1823, 2006.

[20] Vladimir Dragalin, Valerii Fedorov, and Yuehui Wu. Adaptive designs for selecting

drug combinations based on efficacy–toxicity response. Journal of Statistical Plan-

ning and Inference, 138(2):352–373, 2008.

[21] Danel Draguljic, Angela M. Dean, and Thomas J. Santner. Noncollapsing space-

filling designs for bounded nonrectangular regions. Technometrics, 54(2):169–178,

2012.

105

[22] Gustav Elfving. Optimum allocation in linear regression theory. The Annals of

Mathematical Statistics, 23(2):255–262, 1952.

[23] Valerii Fedorov and Peter Hackl. Model-Oriented Design of Experiments, volume 41.

01 1997.

[24] Valerii V. Fedorov. Theory of optimal experiments. Probability and mathematical

statistics. Academic Press, 1972.

[25] Valerii V. Fedorov. Optimal design with bounded density: Optimization algorithms

of the exchange type. Journal of Statistical Planning and Inference, 22(1):1–13, 1989.

[26] Ronald A. Fisher. The design of experiments. 1935. Oliver and Boyd, Edinburgh,

1935.

[27] Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2(1-

4):153, 1987.

[28] Peter Goos and Bradley Jones. Optimal design of experiments: a case study approach.

John Wiley & Sons, 2011.

[29] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental

construction of Delaunay and Voronoi diagrams. Algorithmica, 7(1-6):381–413, 1992.

[30] Linda M. Haines. The application of the annealing algorithm to the construction of

exact optimal designs for linear–regression models. Technometrics, 29(4):439–447,

1987.

[31] Radoslav Harman. Multiplicative methods for computing D-optimal stratified designs

of experiments. Journal of Statistical Planning and Inference, 146:82–94, 03 2014.

[32] Radoslav Harman, Alena Bachratá, and Lenka Filová. Construction of efficient ex-

perimental designs under multiple resource constraints. Applied Stochastic Models

in Business and Industry, 32(1):3–17, 2016.

[33] Radoslav Harman and Eva Benková. Barycentric algorithm for computing D-optimal

size- and cost-constrained designs of experiments. Metrika, 80(2):201–225, 2017.

106

[34] Radoslav Harman and Lenka Filová. Computing efficient exact designs of experi-

ments using integer quadratic programming. Computational Statistics & Data Anal-

ysis, 71:1159–1167, 2014.

[35] Radoslav Harman and Luc Pronzato. Improvements on removing nonoptimal support

points in D-optimum design algorithms. Statistics & probability letters, 77(1):90–94,

2007.

[36] Radoslav Harman and Mária Trnovská. Approximate D-optimal designs of experi-

ments on the convex hull of a finite set of information matrices. Mathematica Slovaca,

59(6):693–704, 2009.

[37] Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations.

Discrete & Computational Geometry, 22(3):333–346, 1999.

[38] Mark E. Johnson, Leslie M. Moore, and Donald Ylvisaker. Minimax and maximin

distance designs. Journal of Statistical Planning and Inference, 26(2):131 – 148,

1990.

[39] Bradley Jones, Rachel T. Silvestrini, Douglas C. Montgomery, and David M. Stein-

berg. Bridge designs for modeling systems with low noise. Technometrics, 57(2):155–

163, 2014.

[40] V. Roshan Joseph, Evren Gul, and Shan Ba. Maximum projection designs for com-

puter experiments. Biometrika, 102(2):371–380, 2015.

[41] Jack Kiefer. The role of symmetry and approximation in exact design optimality. In

Statistical decision theory and related topics, pages 109–118. Elsevier, 1971.

[42] Jesús López-Fidalgo and Sandra A. Garcet-Rodríguez. Optimal experimental designs

when some independent variables are not subject to control. Journal of the American

Statistical Association, 99(468):1190–1199, 2004.

[43] Saumen Mandal, Ben Torsney, and Keumhee C. Carriere. Constructing optimal

designs with constraints. Journal of Statistical Planning and Inference, 128(2):609 –

621, 2005.

107

[44] Frederick McCollum. Power diagrams. https://www.mathworks.com/

matlabcentral/fileexchange/44385-power-diagrams. MATLAB Central

File Exchange. Retrieved November, 2018.

[45] Michael D. McKay, Richard J. Beckman, and William J. Conover. A comparison of

three methods for selecting values of input variables in the analysis of output from

a computer code. Technometrics, 21(2):239–245, 1979.

[46] Ruth K. Meyer and Christopher J. Nachtsheim. The coordinate-exchange algorithm

for constructing exact optimal experimental designs. Technometrics, 37(1):60–69,

1995.

[47] Jaroslava Mikulecká. On a hybrid experimental design. Kybernetika, 19(1):1–14,

1983.

[48] Toby J. Mitchell. An algorithm for the construction of “D-optimal” experimental

designs. Technometrics, 16(2):203–210, 1974.

[49] Max D. Morris and Toby J. Mitchell. Exploratory designs for computational experi-

ments. Journal of Statistical Planning and Inference, 43(3):381–402, 1995.

[50] Werner G. Müller, Radoslav Harman, and Eva Benková. Discussion of “Space-filling

designs for computer experiments: A review”. Quality Engineering, 28(1):36–38,

2016.

[51] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial tes-

sellations: concepts and applications of Voronoi diagrams, volume 501. John Wiley

& Sons, 2009.

[52] Youjin Park, Douglas C. Montgomery, John W. Fowler, and Connie M. Borror. Cost-

constrained G-efficient response surface designs for cuboidal regions. Quality and

Reliability Engineering International, 22(2):121–139, 2006.

[53] Andrej Pázman. Foundations of Optimum Experimental Design (Mathematics and

its Applications). Reidel Publ. Comp., Dodrecht, 1986.

[54] Andrej Pázman and Vladimír Lacko. Prednášky z regresných modelov. Univerzita

Komenského v Bratislave, Bratislava, 2012.

108

https://www.mathworks.com/matlabcentral/fileexchange/44385-power-diagrams
https://www.mathworks.com/matlabcentral/fileexchange/44385-power-diagrams

[55] Matthieu Petelet, Bertrand Iooss, Olivier Asserin, and Alexandre Loredo. Latin hy-

percube sampling with inequality constraints. AStA Advances in Statistical Analysis,

94(4):325–339, 2010.

[56] R. L. Plackett and J. P. Burman. The Design of Optimum Multifactorial Experi-

ments. Biometrika, 33(4):305–325, 06 1946.

[57] Luc Pronzato. Penalized optimal designs for dose-finding. Journal of Statistical

Planning and Inference, 140(1):283–296, 2010.

[58] Luc Pronzato. Minimax and maximin space-filling designs: some properties and

methods for construction. Journal de la Société Française de Statistique, 158(1):7–

36, 2017.

[59] Luc Pronzato and Werner G. Müller. Design of computer experiments: space filling

and beyond. Statistics and Computing, 22(3):681–701, May 2012.

[60] Luc Pronzato and Andrej Pázman. Design of experiments in nonlinear models.

asymptotic normality, optimality criteria and small-sample properties, 2013.

[61] Friedrich Pukelsheim. Optimal Design of Experiments. Society for Industrial and

Applied Mathematics, 2006.

[62] Friedrich Pukelsheim and Sabine Rieder. Efficient rounding of approximate designs.

Biometrika, 79(4):763–770, 1992.

[63] Ewaryst Rafaj lowicz. Minimum cost experiment design with a prescribed information

matrix. Theory of Probability and its Applications, 34(2):412–416, 1989.

[64] Guillaume Sagnol and Radoslav Harman. Computing exact D-optimal designs by

mixed integer second-order cone programming. The Annals of Statistics, 43(5):2198–

2224, 2015.

[65] Guillaume Sagnol and Radoslav Harman. Computing exact D-optimal designs by

mixed integer second-order cone programming. Ann. Statist., 43(5):2198–2224, 2015.

[66] Samuel D. Silvey, Donald M. Titterington, and Ben Torsney. An algorithm for opti-

mal designs on a design space. Communications in Statistics - Theory and Methods,

7(14):1379–1389, 1978.

109

[67] David Sinclair. S-hull: a fast radial sweep-hull routine for Delaunay triangulation.

arXiv preprint arXiv:1604.01428, 2016.

[68] Kirstine Smith. On the standard deviations of adjusted and interpolated values of an

observed polynomial function and its constants and the guidance they give towards

a proper choice of the distribution of observations. Biometrika, 12(1/2):1–85, 1918.

[69] Lieven Tack and Martina Vandebroek. Budget constrained run orders in optimum

design. Journal of statistical planning and inference, 124(1):231–249, 2004.

[70] Ben Torsney. A moment inequality and monotonicity of an algorithm. In Anthony V.

Fiacco and Kenneth O. Kortanek, editors, Semi-Infinite Programming and Applica-

tions, pages 249–260, Berlin, Heidelberg, 1983. Springer Berlin Heidelberg.

[71] Ben Torsney and Saumen Mandal. Construction of constrained optimal designs. In

Optimum Design 2000, pages 141–152. Springer, 2001.

[72] Ben Torsney and Saumen Mandal. Two classes of multiplicative algorithms for

constructing optimizing distributions. Computational statistics & data analysis,

51(3):1591–1601, 2006.

[73] Ben Torsney and Raúl Martín-Martín. Multiplicative algorithms for computing op-

timum designs. Journal of Statistical Planning and Inference, 139(12):3947–3961,

2009.

[74] Dariusz Uciński. Optimal measurement methods for distributed parameter system

identification. CRC Press, 2004.

[75] Dariusz Uciński and Maciej Patan. D-optimal design of a monitoring network

for parameter estimation of distributed systems. Journal of Global Optimization,

39(2):291–322, 2007.

[76] Martijn van Manen and Dirk Siersma. Power diagrams and their applications. arXiv

preprint math/0508037, 2005.

[77] Lieven Vandenberghe, Stephen Boyd, and Shao-Po Wu. Determinant maximization

with linear matrix inequality constraints. SIAM Journal on Matrix Analysis and

Applications, 19(2):499–533, 1998.

110

[78] David F. Watson. Computing the n-dimensional Delaunay tessellation with applica-

tion to Voronoi polytopes. The computer journal, 24(2):167–172, 1981.

[79] William J. Welch. Branch-and-bound search for experimental designs based on D

optimality and other criteria. Technometrics, 24(1):41–48, 1982.

[80] William J. Welch. Computer-aided design of experiments for response estimation.

Technometrics, 26(3):217–224, 1984.

[81] Natalie Wolchover. A bird’s-eye view of nature’s hidden order. Quanta Magazine,

2016.

[82] Stephen E. Wright, Belle M. Sigal, and A. John Bailer. Workweek optimization of

experimental designs: exact designs for variable sampling costs. Journal of Agricul-

tural, Biological and Environmental Statistics, 15(4):491–509, 2010.

[83] Chien-Fu Wu and Henry P. Wynn. The convergence of general step-length algorithms

for regular optimum design criteria. The Annals of Statistics, 6(6):1273 – 1285, 1978.

[84] Henry P. Wynn. The sequential generation of D-optimum experimental designs. The

Annals of Mathematical Statistics, 41(5):1655 – 1664, 1970.

[85] Yaming Yu. Monotonic convergence of a general algorithm for computing optimal

designs. The Annals of Statistics, 38(3):1593–1606, 2010.

[86] Yaming Yu. D-optimal designs via a cocktail algorithm. Statistics and Computing,

21(4):475–481, 2011.

[87] Maryam Zolghadr and Sergei Zuyev. Optimal design of dilution experiments under

volume constraints. Journal of Agricultural, Biological and Environmental Statistics,

21(4):663–683, 2016.

111

	Introduction
	Design of experiments
	Standard designs
	Optimal designs
	State of the art

	Goals of the thesis
	Outline

	Size- and cost-constrained designs
	Preliminaries
	Linear constraints
	Optimal design theory
	Barycentric algorithm for linearly constrained designs

	Size- and cost-constrained designs
	Theoretical results for approximate D-optimal size- and cost-constrained designs
	The S&C algorithm
	Numerical study
	Miscellaneaous remarks
	A pair of general positive linear constraints
	Cost minimization with a prescribed information matrix
	Relations to stratified D-optimality
	A re-normalization method
	The middle role of the S&C algorithm

	Privacy sets
	Preliminaries
	Space-filling designs

	Privacy sets
	Privacy Sets Algorithm

	Privacy sets for Bridge designs
	Examples: D-optimal Bridge designs on a cubical design space
	Space-filling designs on a constrained design space

	Privacy sets for Minimum-distance designs
	Motivation
	Voronoi diagrams and Delaunay triangulations
	Power diagrams and regular triangulations
	Computing VDs and DTs
	Computing PDs and RTs: Generalized Bowyer-Watson incremental algorithm
	Implementation of PSA for Minimum-distance designs
	Examples

	Results, conclusions and outlook
	Main results
	Future research

